Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-2 of 2
Gastone Pietro Rosati Papini
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Felice Arena, Luca Daniele, Vincenzo Fiamma, Marco Fontana, Giovanni Malara, Giacomo Moretti, Alessandra Romolo, Gastone Pietro Rosati Papini, Andrea Scialò, Rocco Vertechy
Proc. ASME. OMAE2018, Volume 10: Ocean Renewable Energy, V010T09A028, June 17–22, 2018
Paper No: OMAE2018-77830
Abstract
This paper describes the results of an experimental campaign conducted on a U-Oscillating Water Column (U-OWC) wave energy converter equipped with Dielectric Elastomer Generator (DEG) Power Take-Off (PTO) system. The considered PTO technology has the potential for overcoming some of the limitations associated with the use of traditional self-rectifying turbines. Experiments have been performed in the benign sea test site of the Natural Ocean Engineering Laboratory (NOEL), where the DEG/U-OWC was exposed to sea states with a significant wave height in the range of 0.15 m – 0.45 m and peak spectral periods in the range of 1.8 s – 3.3 s. The aim of this work is to analyze the dynamic response of the coupled DEG-PTO and U-OWC system. The analysis of the experimental data shows that the presence of the DEG determines a slight decrease in the natural period of the water column oscillations. Through the tests, we also demonstrate that a relief valve can be successfully used to actively tune the dynamic response of the system to ensure the safety of the DEG in severe sea-states.
Proceedings Papers
Proc. ASME. SMASIS2013, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation, V001T03A038, September 16–18, 2013
Paper No: SMASIS2013-3255
Abstract
Dielectric Elastomers (DEs) are incompressible rubber-like solids whose electrical and structural responses are highly nonlinear and strongly coupled. Thanks to their coupled electro-mechanical response, intrinsic lightness, easy-manufacturability and low-cost, DEs are perfectly suited for the development of novel solid-state polymeric energy conversion units with capacitive nature and high-voltage operation, which are more resilient, lightweight, integrated, economic and disposable than traditional generators based on conventional electromagnetic technology. Inflated Circular Diaphragm DE Generators (ICD-DEGs) are a special embodiment of polymeric transducer which can be used to convert pneumatic energy into usable electricity. Potential application of ICD-DEGs is as Power Take-Off (PTO) system for wave energy converters based on the Oscillating Water Column (OWC) principle. This paper presents a reduced, yet accurate, dynamic model for ICD-DEGs which features one degree of freedom and which accounts for DE visco-elasticity. The model is computationally simple and can be easily integrated into existing wave-to-wire models of OWCs to be used for fast analysis and real-time applications. For demonstration purposes, integration of the considered ICD-DEG model with a lumped-parameter hydrodynamic model of a realistic OWC is also presented along with a simulation case study.