Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Subjects
Journal
eBook Series
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-4 of 4
Fan Zhao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. PVP2020, Volume 7: Non-Destructive Examination, V007T07A012, August 3, 2020
Paper No: PVP2020-21322
Abstract
Pulsed eddy current (PEC) is a new technique to distinguish corrosion defeats inside and outside the metal pipeline. In comparison with other eddy current techniques, the PEC technique has the advantage of being simple and high velocity. In this article, a brand-new PEC probe based on differential conductivity is established through the combination of modules like square wave generator, eddy current coil bridge, differential current, voltage sample circuits and so on. The 50% duty cycle square wave is used as the driving signal. To measure differential conductance, a coil bridge configuration with two legs is adopted. One leg is composed of measurement eddy current coil and the in-series resistor, and the other is reference eddy current coil and the in-series resistor. Because the two legs go through defects in pipeline non-synchronously, there is a differential conductance between the two coils. A trans-impedance amplify circuit is used to detect coil eddy current. At the same time, two amplifiers are used to measure the differential voltage between the two coils. A 14 bit ADC is used to sample differential voltage, measurement and reference eddy currents which transferred to differential current by main processor Complex Programmable Logic Device (CPLD). CPLD is used to get differential conductance by differential current divide differential voltage. At last the eddy current signal sampling sequence is developed. A dynamic testing fixture with artificial defects carved on the pipeline is used to validate PEC probe’s accuracy. The differential conductance signals were displayed on the oscilloscope. Results showed that the inside defect had two peaks, positive peak and negative peak, but the outside defect only had one positive peak. We can conclude that the brand-new PEC probe has high accuracy in distinguishing the inside and outside defects.
Proceedings Papers
Proc. ASME. PVP2020, Volume 8: Operations, Applications, and Components, V008T08A006, August 3, 2020
Paper No: PVP2020-21128
Abstract
Industrial production is accompanied by a large number of physical and chemical reactions. Steam, whose heat was often used to carry out various production activities, is a common medium in industrial production. Steam pipeline has the characteristics of high temperature and high pressure. The pipeline has been in service at high temperature for a long time, which is prone to metal material degradation such as graphitization and spheroidization. Cause of the expansion of steam pipeline after heating, the natural compensation structure is generally adopted in the whole plant pipe gallery. In recent years, the accidents of steam pipeline occurred frequently, so we must pay more attention to the safety of steam pipeline. Periodic Inspection Regulation for Industrial Pressure Piping (TSG D7005-2018) explicitly requires stress analysis and checking in some cases to determine the safety of the pipeline. The traditional inspection method adopts a random sampling model which has the risk of over inspection and missing inspection. Taking a whole plant steam pipeline as an example, this paper introduced the stress check criterion of pipeline in ASMEB31.3.The model of the pipeline was established by the software, and the stress state and displacement of each node of the pipeline were calculated. According to the calculation results, a targeted inspection scheme was established and effective data support was provided for the regular inspection of steam pipeline.
Journal Articles
Journal:
Journal of Vibration and Acoustics
Article Type: Research-Article
J. Vib. Acoust. December 2017, 139(6): 061018.
Paper No: VIB-16-1472
Published Online: August 17, 2017
Abstract
The moving web is widely used to make printing and packaging products, flexible electronics, cloths, etc. The impact of the variable density on printing web dynamic behavior is considered. The density changes in the form of sine half-wave in the lateral direction. Based on the D'Alembert's principle, the transverse vibration differential equation of moving printing web with variable density is established and is discretized by using the differential quadrature method (DQM). The complex characteristic equation is derived. The impacts of the density coefficient and the dimensionless speed on the web stability and vibration characteristics are discussed. The results show that it is feasible to use the DQM to analyze the problem of transverse vibration of printing web with varying density; the tension ratio and the density coefficient have important impacts on the stability of moving printing web. This study provides theoretical guidance and basis for optimizing the structure of printing press and improving the stable working speed of printing press and web.
eBook Chapter
Series: ASME Press Select Proceedings
Publisher: ASME Press
Published: 2011
ISBN: 9780791859759
Abstract
The Kalman filtering (KF) is widely used in the low-cost MEMS-SINS/GPS integrated navigation system. In such a system, the quaternion method is usually used to calculate the attitude angles, and then the attitude angular error correction is made by the periodic Kalman filtering. This will result in two different effects. One is the produced angular divergence if the filtering cycle is long; another is the increased complexity and the affected real-time effects if the filtering cycle is short. To trade off the filtering performance and the real-time effect, the KPCA (Kernel principal component analysis) based KF is proposed in this paper. The quaternion reconstruction error by KPCA is used to decide whether KF is carried out or not. That is, if the KPCA reconstruction error is beyond the set threshold, the KF is carried out, otherwise, the quaternion solution is utilized. The experimental results show the relative superiority of KPCA-based KF compared to KF.