Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
E. Radi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Applied Mechanics
Article Type: Research-Article
J. Appl. Mech. May 2014, 81(5): 051013.
Paper No: JAM-13-1407
Published Online: January 8, 2014
Abstract
In the present work, the problem of an infinite elastic perfectly plastic plate under axisymmetrical loading conditions resting on a bilateral Pasternak elastic foundation is considered. The plate is assumed thin, thus making it possible to neglect the shear deformation according to the classical Kirchhoff theory. Yielding is governed by the Johansen's yield criterion with associative flow rule. A uniformly distributed load is applied on a circular area on the top of the plate. As the load is increased, a circular elastic-plastic region spreads out starting from the center of the loaded area, whereas the outer unbounded region behaves elastically. Depending on the size of the loaded area, a further increase of the load may originate two or three different elastic-plastic regions, corresponding to different yield loci. A closed form solution of the governing equations for each region is found for a special value of the ratio between Pasternak soil moduli. The performed analysis allows us to estimate the elastic-plastic behavior of the plate up to the onset of collapse, here defined by the formation of a plastic mechanism within the plate. The corresponding collapse load and the sizes of the elastic-plastic regions are thus found by imposing the boundary and continuity conditions between the different regions. The influence of the soil moduli, plate bending stiffness, and size of the loaded area on the ultimate bearing capacity of the plate is then investigated in detail.
Journal Articles
Journal:
Journal of Applied Mechanics
Article Type: Research Papers
J. Appl. Mech. December 1991, 58(4): 982–987.
Published Online: December 1, 1991
Abstract
The dynamic stress and displacement fields in the neighborhood of the tip of a crack propagating in an orthotropic medium are obtained. The approach deals with the methods of linear algebra to transform the equations of motion into a first-order elliptic system whose solution is sought under the assumption that the local displacement field may be represented under a scheme of separated variables. The analytical approach has enabled the distinction between two kinds of orthotropic materials for which explicit espressions of the near-tip stress fields are obtained. Some results are presented graphically also in order to compare them with the numerical solution given in a quoted reference.