Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-2 of 2
Dannis Brouwer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. IDETC-CIE2020, Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC), V002T02A015, August 17–19, 2020
Paper No: DETC2020-22242
Abstract
Flexure joints are rapidly gaining ground in precision engineering because of their predictable behavior. However the range of motion of flexure joints is limited due to loss of support stiffness in deformed configurations. Most of the common flexure joints consist of prismatic leaf springs. This paper presents a simple non-prismatic beam formulation that can be used for the efficient modelling of non-prismatic leaf springs. The resulting stiffness and stress computed by the non-prismatic beam element are compared to the results of a finite element analysis. The paper shows that the support stiffness of two typical flexure joints can be increased up to a factor of 1.9 by using non-prismatic instead of prismatic leaf springs.
Journal Articles
Article Type: Research-Article
J. Manuf. Sci. Eng. August 2016, 138(8): 081012.
Paper No: MANU-15-1241
Published Online: May 20, 2016
Abstract
A micro-actuator for precision alignment, using laser forming of a tube, is presented. Such an actuator can be used to align components after assembly. The positioning of an optical fiber with respect to a waveguide chip is used as a test case, where a submicron lateral alignment accuracy is required. A stainless steel tube with an outer diameter of 635 μ m was used as a simple and compact actuator, where the fiber is mounted concentrically in the tube. An experimental setup has been developed to measure the fiber displacement in real time with a resolution better than 0.1 μ m. In addition, this setup allows the axial and radial positioning of the laser spot over the surface of the tube. Several tube samples were (de)formed to move a fiber to a predefined position, using a laser with a wavelength of 1080 nm, a pulse length of 200 ms, and a power between 4 W and 10 W. On average of 18 laser pulses were required to reach the targeted position of the fiber with an accuracy of 0.1 μ m. It has been found that increasing the laser power not only results in a larger bending angle but also in a larger uncertainty of this angle. The opposite is true for the radial bending direction, where the uncertainty decreases with increasing laser power.