Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-1 of 1
Daniel Mizell
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Material Combinations for the Piston-Cylinder Interface of Axial Piston Machines: A Simulation Study
Proc. ASME. FPNI2014, 8th FPNI Ph.D Symposium on Fluid Power, V001T02A007, June 11–13, 2014
Paper No: FPNI2014-7841
Abstract
Axial-piston pumps and motors which operate at high pressures (above 380 bar) typically incorporate a copper-alloy bushing paired with a steel piston. Manufacturers have a desire to eliminate such nonferrous heavy metals from their designs to reduce manufacturing complexity and cost. This paper explores possible alternatives to this material combination at high pressures. Simulations incorporating thermal and elastic material properties are computed using a Fluid Structure Thermal Interaction (FSTI) model. The results of simulation reveal how material properties interact to affect fluid film thickness and pressure generation during pump operation. An understanding of these phenomena points the way toward the selection of novel material combinations to improve the behavior of the piston/cylinder interface.