Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-7 of 7
Daniel D. Samborsky
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. IMECE2011, Volume 8: Mechanics of Solids, Structures and Fluids; Vibration, Acoustics and Wave Propagation, 47-51, November 11–17, 2011
Paper No: IMECE2011-62768
Abstract
Montana State University (MSU) has a compilation of material systems, environmental chambers, and mechanical testing equipment to determine composite materials performance and failure characteristics. Mechanical characterization of composite systems will provide direct quantification of the materials under consideration for Marine Hydro Kinetic (MHK) designs that were initially developed for the wind turbine industry. The work presented herein represents the testing protocol development and initial results to support investigations on the effect of sea water absorption on material strength. A testing protocol for environmental effects has been developed for the resin infused in-house fabricated laminates. Unidirectional ([0] and [90]) test samples of 2-mm and 6-mm thickness were be submerged for 1000 hours in synthetic sea water at 40°C with the weight recorded at time intervals over the entire period. After 1000 hours of conditioning, coupons were placed in the synthetic sea water at 20°C until testing. Static compressive and tensile strength properties at temperatures of 5°C, 20°C and 40°C were collected. These initial results show trends of reduced tensile and compressive strength with increasing moisture and temperature in the 0° (longitudinal) direction. In the 90° (transverse) direction, compression strength decreases but tensile strength is little affected as temperature and moisture increase. Elastic modulus (E) is little affected in the longitudinal direction but decreases in the transverse direction.
Proceedings Papers
Proc. ASME. WIND2003, ASME 2003 Wind Energy Symposium, 167-179, January 6–9, 2003
Paper No: WIND2003-692
Abstract
This paper reports on recent fatigue data of interest to the wind turbine industry in several areas: (a) very high cycle S-N data; (b) refined Goodman Diagram; (c) effects of fiber waviness; and (d) large tow carbon fibers. Tensile fatigue results from a specialized high frequency small strand testing facility have been carried out to 10 10 cycles in some cases, beyond the expected cycle range for turbines. While the data cannot be used directly in design due to the specialized test specimen, the data trends help to clarify the proper models for extrapolating from standard coupons to higher cycles. The results for various fiber and matrix systems also provide insight into basic failure mechanisms. For spectrum loading predictions, a more detailed Goodman Diagram has been developed with additional R-values (R is the ratio of minimum to maximum stress in a cycle). The data of greatest interest were obtained for tensile fatigue with low cyclic amplitudes, close to R = 1.0, to clarify the shape of the diagram as the cyclic amplitude approaches zero. These data may significantly shorten lifetime predictions compared with traditional Goodman Diagram constructions based on more limited data. The effects of material/process induced flaws on properties continues to be a major concern, particularly with large tow carbon fabrics. The results of a study of fiber waviness effects on compressive strength show significant strength reductions for severe waviness which can be introduced in resin infusion processes. The final section presents new fatigue results for large tow carbon/fiberglass hybrid composites. Epoxy resin laminates show marginally higher compressive strength and fatigue resistance with carbon fibers. Improved compressive static and fatigue performance is found with stitched fabrics as compared with woven fabrics.
Proceedings Papers
Proc. ASME. WIND2003, ASME 2003 Wind Energy Symposium, 202-213, January 6–9, 2003
Paper No: WIND2003-697
Abstract
Delamination between plies is the root cause of many failures of composite materials structures such as wind turbine blades. Design methodologies to prevent such failures have not been widely available for the materials and processes used in blades. This paper presents simplified methodologies for the prediction of delamination under both static and fatigue loading at typical structural details in blades. The methodology is based on fracture mechanics. The critical strain energy release rate, G IC and G IIC , are determined for opening mode (I) and shearing mode (II) delamination cracks; fatigue crack growth in each mode is also characterized. These data can be used directly for matrix selection, and as properties for the prediction of delamination in structural details. The strain energy release rates are then determined for an assumed interlaminar flaw in the structural detail. The flaw is positioned based on finite element analysis (FEA), and the strain energy release rates are calculated using the virtual crack closure feature available in codes like ANSYS. The methodology has been validated for a skin-stiffener intersection. Two prediction methods differing in complexity and data requirements have been explored. Results for both methods show good agreement between predicted and experimental delamination loads under both static and fatigue loading.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Research Papers
J. Sol. Energy Eng. February 2009, 131(1): 011006.
Published Online: January 6, 2009
Abstract
New fatigue test results are presented for four multidirectional laminates of current and potential interest for wind turbine blades, representing three types of fibers: E-glass, WindStrand™ glass, and carbon, all with epoxy resins. A broad range of loading conditions is included for two of the laminates, with the results represented as mean and 95 ∕ 95 confidence level constant life diagrams. The constant life diagrams are then used to predict the performance under spectrum fatigue loading relative to an earlier material. Comparisons of the materials show significant improvements under tensile fatigue loading for carbon, WindStrand, and one of the E-glass fabrics relative to many E-glass laminates in the 0.5–0.6 fiber volume fraction range. The carbon fiber dominated laminate shows superior fatigue and static strengths, as well as stiffness, for all loading conditions.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Research Papers
J. Sol. Energy Eng. August 2008, 130(3): 031001.
Published Online: June 13, 2008
Abstract
Delamination at ply drops in composites with thickness tapering has been a concern in applications of carbon fibers. This study explored the resistance to delamination under fatigue loading of carbon and glass fiber prepreg laminates with the same resin system, containing various ply drop geometries, and using thicker plies typical of wind turbine blades. Applied stress and strain levels to produce significant delamination at ply drops have been determined, and the experimental results correlated through finite element and analytical models. Carbon fiber laminates with ply drops, while performing adequately under static loads, delaminated in fatigue at low maximum strain levels except for the thinnest ply drops. The lower elastic modulus of the glass fiber laminates resulted in much higher strains to produce delamination for equivalent ply drop geometries. The results indicate that ply drops for carbon fibers should be much thinner than those commonly used for glass fibers in wind turbine blades.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Technical Papers
J. Sol. Energy Eng. November 2003, 125(4): 506–514.
Published Online: November 26, 2003
Abstract
This paper reports on recent fatigue data of interest to the wind turbine industry in several areas: (a) very high-cycle fatigue data; (b) refined Goodman Diagram; (c) effects of fiber waviness; and (d) large-tow carbon fibers. Tensile fatigue results from a specialized high-frequency small strand testing facility have been carried out to 10 10 cycles in some cases, beyond the expected cycle range for turbines. While the data cannot be used directly in design due to the specialized test specimen, the data trends help to clarify the proper models for extrapolating from standard coupons to higher cycles. The results for various fiber and matrix systems also provide insight into basic failure mechanisms. For spectrum loading predictions, a more detailed Goodman Diagram has been developed with additional R -values ( R is the ratio of minimum to maximum stress in a cycle). The data of greatest interest were obtained for tensile fatigue with low cyclic amplitudes, close to R = 1.0 , to clarify the shape of the diagram as the cyclic amplitude approaches zero. These data may significantly shorten lifetime predictions compared with traditional Goodman Diagram constructions based on more limited data. The effects of material/process induced flaws on properties continues to be a major concern, particularly with large-tow carbon fabrics. The results of a study of fiber waviness effects on compressive strength show significant strength reductions for severe waviness which can be introduced in resin infusion processes. The final section presents new fatigue results for large-tow carbon/fiberglass hybrid composites. Epoxy resin laminates show marginally higher compressive strength and fatigue resistance with carbon fibers. Improved compressive static and fatigue performance is found with stitched fabrics as compared with woven fabrics.
Journal Articles
Journal:
Journal of Solar Energy Engineering
Article Type: Technical Papers
J. Sol. Energy Eng. November 2003, 125(4): 522–530.
Published Online: November 26, 2003
Abstract
Delamination between plies is the root cause of many failures of composite material structures such as wind turbine blades. Design methodologies to prevent such failures have not been widely available for the materials and processes used in blades. This paper presents simplified methodologies for the prediction of delamination in typical structural details in blades under both static and fatigue loading. The methodologies are based on fracture mechanics. The critical strain-energy release rate, G IC and G IIC , are determined for opening mode (I) and shearing mode (II) delamination cracks; fatigue crack growth in each mode is also characterized. These data can be used directly for matrix selection and as properties for the prediction of delamination in structural details. The strain-energy release rates are then determined for an assumed interlaminar flaw in a structural detail. The flaw is positioned based on finite-element analysis (FEA), and the strain-energy release rates are calculated using the virtual crack closure feature available in codes like ANSYS ® . The methodologies have been validated for a skin-stiffener intersection. Two prediction methods differing in complexity and data requirements have been explored. Results for both methods show good agreement between predicted and experimental delamination loads under both static and fatigue loading.