Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-2 of 2
D. L. Sadowski
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
R. C. Knott, D. L. Sadowski, S. M. Jeter, S. I. Abdel-Khalik, H. A. Al-Ansary, Abdelrahman El-Leathy
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A042, June 30–July 2, 2014
Paper No: ES2014-6588
Abstract
This research is a part of the DOE-funded SunShot project on “High Temperature Falling Particle Receiver.” Storing thermal energy using solid particulates is a way to mitigate the time of day dependency of concentrated solar power. Small particles may be stored easily, and can be used as a heat transfer medium to transfer heat to the power cycle working fluid through a heat exchanger. This study examines the physical characteristics of solid particulates of different materials kept inside large storage containers. Particle behavior at the expected high temperatures of the concentrated solar power cycle combined with the elevated pressure experienced within the storage container must be evaluated to assess the impact on their physical properties and ensure that the particles would not sinter thereby impacting flow through the system components particularly the receiver and heat exchanger. Sintering is a process of fusing two or more particles together to form a larger agglomerate. In the proposed concentrated solar power tower design, particles will experience temperatures from 600°C to 1000°C. The increase in temperature changes the physical characteristics of the particle, along with any impurities that could form particle to particle bonds. In addition, the hydrostatic pressure exerted on particles stored inside a storage unit increases the probability of sintering. Thus, it is important to examine the characteristics of particles under elevated temperatures and pressures. The experimental procedure involves heating particulates of a known mass and size distribution to temperatures between 600°C and 1000°C inside a crucible. As the temperature is held constant, the particulate sample is pressed upon by a piston pushing into the crucible with a known constant pressure. This process is repeated for different temperatures and pressures for varying lengths of time. The resulting particulates are cooled, and their size distribution is measured to determine the extent of sintering, if any, during the experiment. The particulates tested include various types of sand, along with alumina particles. The data from this experiment will allow designers of storage bins for the solid particulates to determine when significant sintering is expected to occur.
Proceedings Papers
R. C. Knott, D. L. Sadowski, S. M. Jeter, S. I. Abdel-Khalik, H. A. Al-Ansary, Abdelrahman El-Leathy
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A041, June 30–July 2, 2014
Paper No: ES2014-6586
Abstract
Using solid particulates as a heat absorption and transfer medium in solar concentrated systems is a solution for collecting and storing thermal energy. Solid particulates, such as sand, are relatively inexpensive and are much less corrosive and expensive to maintain than molten salts. Small particles may be stored easily, and can be used as a heat transfer medium for use with a suitable heat exchanger. Despite their anticipated low cost, excessive degradation of the particulates requiring replenishment or disrupting operation could impair the overall economics. Consequently, the durability of the particulates should be verified. Responding to this need, this study examines the durability of solid particulates as a heat transfer medium in a closed cycle for concentrated solar power central receiver systems. Specifically, this study analyzes the combination of attrition and sintering of sand with varying temperatures. Attrition is the reduction of a particle’s mass and sintering is a process of fusing two or more particles together to form a larger agglomerate. In a closed cycle, particularly for a concentrated solar power tower, a particle will experience typical temperatures from 600°C to 1000°C. The increase in temperature may change the physical characteristics of the particles and along with any impurities may promote lower softening point bonding. Thus, it is important to investigate particle durability at high temperatures. The experimental procedure used in this investigation involves heating and abrading particulates of a known mass and size distribution to temperatures between 600°C and 1000°C, and also at 25°C to observe attrition only. The testing is conducted using a specially designed experimental apparatus described below. The heated particulates are contained in a metal cylinder. Inside the cylinder is another cylinder made of a porous silicon carbide foam. As the temperature is held constant, the particulate sample is rotated 180 degrees around a horizontal axis every 15 seconds from a low position to a higher position so that the particulates fall and abrade against each other. This process is repeated for a known number of cycles (many thousands). Then the resulting particulate size distribution is measured to determine the amount of attrition and sintering occurred during the experiment. The particulates tested are various types of sand with varying mean diameters and composition, along with a ceramic particulate similar to hydraulic fracturing proppants. Sample composition, sample size distribution, and temperature will be used to establish parameters for rates of attrition and sintering. These rates will be used to predict the behavior of particulates in a concentrated solar power tower closed cycle.