Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-2 of 2
Amrit Ambirajan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Heat Transfer
Article Type: Research-Article
J. Heat Transfer. February 2013, 135(2): 021301.
Paper No: HT-12-1129
Published Online: January 4, 2013
Abstract
This paper reports the results of an experimental study to determine the principal thermal conductivities (kx,ky, and kz) of an anisotropic composite medium using an inverse heat transfer analysis. The direct problem consists of solving the three dimensional heat conduction equation in an orthotropic composite medium with the finite difference method to generate the required temperature distribution for known thermal conductivities. The measurement technique involves dissipating a known heat flux at the central region of a square sample and allowing it to conductively transfer the heat to an aluminium cold plate sink via a square copper ring. At steady state, temperatures at 28 (19 are used for retrievals due to symmetry) discrete locations are logged and used for parameter estimation. The entire measurement process is conducted in a vacuum environment. The inverse heat conduction problem (IHCP) for retrieving the orthotropic thermal conductivity tensor(parameter estimation) is then solved using a two layer feed forward back propagation artificial neural network (ANN) trained using the Levenberg–Marquardt algorithm (LMA), with temperatures as input and thermal conductivity values kx,ky, and kz as the output. The method is first validated against a stainless steel(SS-304) sample of known thermal properties followed by the determination of the orthotropic conductivities of the honeycomb composite material.
Proceedings Papers
Proc. ASME. IHTC14, 2010 14th International Heat Transfer Conference, Volume 5, 803-810, August 8–13, 2010
Paper No: IHTC14-22226
Abstract
The problem of mutually irradiating conducting fins is considered in this paper. The problem is analyzed under two types of surface models, namely, diffuse-specular (D-S) model and a directional (Dir) radiative surface property model, for various surface roughnesses and RMS slopes. Metal (aluminum) coated and dielectric (Aluminum oxide) coated surfaces are considered as the two extreme cases. Analysis indicates that dielectric coated surfaces are sensitive to the radiative surface property model while metal coated surfaces are insensitive to the surface property model. Irrespective of the surface property model used metal coated surface show a drastic drop in heat flux for even a slight increase in surface roughness.