Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-2 of 2
Agnieszka Truszkowska
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Heat Transfer
Article Type: Research-Article
J. Heat Transfer. May 2018, 140(5): 051301.
Paper No: HT-16-1523
Published Online: January 30, 2018
Abstract
We present a method for solving the Boltzmann transport equation (BTE) for phonons by modifying the neutron transport code Rattlesnake which provides a numerically efficient method for solving the BTE in its self-adjoint angular flux (SAAF) form. Using this approach, we have computed the reduction in thermal conductivity of uranium dioxide (UO 2 ) due to the presence of a nanoscale xenon bubble across a range of temperatures. For these simulations, the values of group velocity and phonon mean free path in the UO 2 were determined from a combination of experimental heat conduction data and first principles calculations. The same properties for the Xe under the high pressure conditions in the nanoscale bubble were computed using classical molecular dynamics (MD). We compare our approach to the other modern phonon transport calculations, and discuss the benefits of this multiscale approach for thermal conductivity in nuclear fuels under irradiation.
Proceedings Papers
Proc. ASME. SBC2013, Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments, V01AT20A017, June 26–29, 2013
Paper No: SBC2013-14362
Abstract
Current hemodialysis techniques rely on hollow-fiber tubes in a tube-and-shell operating approach. The method works satisfactorily; but, technological advantages of this method are already exhausted for a long time. Additional improvements are needed which could provide a way towards improving patient health and quality of life. Patients with renal failure undergo intense filtration sessions approximately three times a week leaving them fatigued. Large oscillations in concentration of various solutes within blood cause detrimental consequences on the overall health of patients.