Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-6 of 6
Abdelrahman El-Leathy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Hany Al-Ansary, Abdelrahman El-Leathy, Sheldon Jeter, Matthew Golob, Clayton Nguyen, Eldwin Djajadiwinata, Shaker Alaqel, Rageh Saeed, Said Abdel-Khalik, Zeyad Al-Suhaibani, Syed Danish, Nader Saleh, Ahmed Al-Balawi, Fahad Al-Harthi, Salem Bashraheel, Hatim Gandayh
Proc. ASME. ES2019, ASME 2019 13th International Conference on Energy Sustainability, V001T03A003, July 14–17, 2019
Paper No: ES2019-3856
Abstract
Particle-based power tower systems are a promising technology that can allow operation of concentrating solar power (CSP) systems at temperatures higher than what today’s commercial molten salt systems can achieve, making them suitable for use in a variety of applications, including supercritical CO 2 cycles, air Brayton cycles, and high-temperature process heat. In this concept, particles, instead of molten salt, are heated by the concentrated sunlight. In 2015, this concept was successfully tested at Sandia National Laboratories. In the mean time, an integrated system incorporating a particle heating receiver, a particle-to-air heat exchanger and a 100-kWe microturbine was designed, built, and tested at King Saud University in Riyadh, Saudi Arabia. The integrated system was run in 2018, and results from that test campaign were very promising, with temperatures of the particles leaving the receiver exceeding 600°C despite a number of challenges. The utility sponsoring the project is now planning to move forward with building a 1-MWe plant using the same concept, thereby moving closer to large-scale deployment, and making this facility the world’s first commercial concentrating solar power plant that uses the particle heating receiver concept. Moving from a 100-kWe scale to a 1-MWe scale requires modifications to the design of some components. The most likely plant location is the city of Duba in northwestern Saudi Arabia where the average daily total DNI is 7,170 Wh/m 2 and an integrated solar combined cycle power plant exists on the premises. This paper discusses the design features of the main components of the new plant. Those features include a north field design, a 7.22-m 2 single-sheet heliostat design, a cavity receiver to improve receiver efficiency by reducing radiative and convective losses, temperature-based particle flow regulation within the receiver, six hours of full-load thermal energy storage, with the tanks integrated into the tower structure and made of cost-effective masonry material, a shell-and-tube particle-to-air heat exchanger, a 45% efficiency recuperated intercooled gas turbine, and a high-temperature bucket elevator. The heliostat field was optimized using SolarPILOT. Results show that 1,302 heliostats are needed. The aperture area was found to be approximately 5.7 m 2 , while the total illuminated receiver surface area is about 16.8 m 2 . This design was found to be capable of achieving the particle temperature rise of 416°C, which is necessary to allow the turbine to rely entirely on the solar field to bring the temperature of air to the firing temperature of the turbine, thereby eliminating the need for fuel consumption except for back-up and for assistance at off-design conditions.
Proceedings Papers
R. C. Knott, D. L. Sadowski, S. M. Jeter, S. I. Abdel-Khalik, H. A. Al-Ansary, Abdelrahman El-Leathy
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A042, June 30–July 2, 2014
Paper No: ES2014-6588
Abstract
This research is a part of the DOE-funded SunShot project on “High Temperature Falling Particle Receiver.” Storing thermal energy using solid particulates is a way to mitigate the time of day dependency of concentrated solar power. Small particles may be stored easily, and can be used as a heat transfer medium to transfer heat to the power cycle working fluid through a heat exchanger. This study examines the physical characteristics of solid particulates of different materials kept inside large storage containers. Particle behavior at the expected high temperatures of the concentrated solar power cycle combined with the elevated pressure experienced within the storage container must be evaluated to assess the impact on their physical properties and ensure that the particles would not sinter thereby impacting flow through the system components particularly the receiver and heat exchanger. Sintering is a process of fusing two or more particles together to form a larger agglomerate. In the proposed concentrated solar power tower design, particles will experience temperatures from 600°C to 1000°C. The increase in temperature changes the physical characteristics of the particle, along with any impurities that could form particle to particle bonds. In addition, the hydrostatic pressure exerted on particles stored inside a storage unit increases the probability of sintering. Thus, it is important to examine the characteristics of particles under elevated temperatures and pressures. The experimental procedure involves heating particulates of a known mass and size distribution to temperatures between 600°C and 1000°C inside a crucible. As the temperature is held constant, the particulate sample is pressed upon by a piston pushing into the crucible with a known constant pressure. This process is repeated for different temperatures and pressures for varying lengths of time. The resulting particulates are cooled, and their size distribution is measured to determine the extent of sintering, if any, during the experiment. The particulates tested include various types of sand, along with alumina particles. The data from this experiment will allow designers of storage bins for the solid particulates to determine when significant sintering is expected to occur.
Proceedings Papers
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A028, June 30–July 2, 2014
Paper No: ES2014-6503
Abstract
The Riyadh Techno Valley Solar Tower, an innovative type of concentrator solar power plant, is being developed by King Saud University (KSU) and Georgia Tech (GT). The facility is being constructed at the Riyadh Techno Valley development near the KSU campus and will store thermal energy collected from the sun in solid particles, which can be heated to higher temperatures than is currently possible using molten salts. The particles must be well insulated to stop energy loss to the environment. Hence, GT and KSU have incorporated an insulated storage bin into the plant design. The bin will be constructed in several layers: an inner layer of firebrick, which can endure direct exposure to the heated particles; a specially prepared refractory insulating concrete, which maintains good insulating value at high temperatures; and a conventional structural concrete shell surrounding the entire bin. This paper presents a thermal analysis of this storage device and discusses structural analyses. Simplified analytical solutions are compared with the finite element results from a 3D ANSYS model of the entire bin. A temperature distribution is obtained, and heat loss through the bin is also evaluated. Modeling of rebar and concrete cracking are described, and methods of reducing stress on the outer concrete shell are considered. Structural support for an access tunnel into the bin is also explored. The current tunnel design involves a material with a relatively high thermal conductivity, necessitating modifications to the bin. Finally, material selection is considered, particularly with regard to the insulating concrete layer. Limitations on the use of Portland cement based insulating concretes are discussed, and alternative base materials are evaluated.
Proceedings Papers
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A037, June 30–July 2, 2014
Paper No: ES2014-6568
Abstract
The use of solid particles as a heat transfer and thermal energy storage (TES) medium in central receiver systems has received renewed attention in recent years due to the ability of achieving high temperatures and the potential reduction in receiver and TES costs. Performance of TES systems is primarily characterized by the percentage of heat loss they allow over a prescribed period of time. Accurate estimation of this parameter requires special attention to the transient nature of the process of charging the TES bin during solar field operation and discharging during nighttime or at periods where solar field operation is interrupted. In this study, a numerical model is built to simulate the charge-discharge cycle of a small cylindrical-shaped TES bin that is currently under construction. This bin is integrated into the tower of an experimental 300-kW (thermal) central receiver field being built in Riyadh, Saudi Arabia, for solid particle receiver research, most notably on-sun testing of the falling particle receiver concept within the context of a SunShot project. The model utilizes a type of wall construction that had been previously identified as showing favorable structural characteristics and being able to withstand high temperatures. The model takes into account the anticipated charge-discharge particle flow rates, and includes an insulating layer at the ceiling of the bin to minimize heat loss by convection and radiation to the receiver cavity located immediately over the TES bin. Results show that energy loss during the full charge-discharge cycle is 4.9% and 5.9% for a 5-hour and 17-hour discharge period, respectively. While large, these energy loss values are primarily due to the high surface-to-volume ratio of the small TES bin being investigated. Preliminary analysis shows that a utility-scale TES bin using the same concept will have an energy loss of less than 1%.
Proceedings Papers
R. C. Knott, D. L. Sadowski, S. M. Jeter, S. I. Abdel-Khalik, H. A. Al-Ansary, Abdelrahman El-Leathy
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A041, June 30–July 2, 2014
Paper No: ES2014-6586
Abstract
Using solid particulates as a heat absorption and transfer medium in solar concentrated systems is a solution for collecting and storing thermal energy. Solid particulates, such as sand, are relatively inexpensive and are much less corrosive and expensive to maintain than molten salts. Small particles may be stored easily, and can be used as a heat transfer medium for use with a suitable heat exchanger. Despite their anticipated low cost, excessive degradation of the particulates requiring replenishment or disrupting operation could impair the overall economics. Consequently, the durability of the particulates should be verified. Responding to this need, this study examines the durability of solid particulates as a heat transfer medium in a closed cycle for concentrated solar power central receiver systems. Specifically, this study analyzes the combination of attrition and sintering of sand with varying temperatures. Attrition is the reduction of a particle’s mass and sintering is a process of fusing two or more particles together to form a larger agglomerate. In a closed cycle, particularly for a concentrated solar power tower, a particle will experience typical temperatures from 600°C to 1000°C. The increase in temperature may change the physical characteristics of the particles and along with any impurities may promote lower softening point bonding. Thus, it is important to investigate particle durability at high temperatures. The experimental procedure used in this investigation involves heating and abrading particulates of a known mass and size distribution to temperatures between 600°C and 1000°C, and also at 25°C to observe attrition only. The testing is conducted using a specially designed experimental apparatus described below. The heated particulates are contained in a metal cylinder. Inside the cylinder is another cylinder made of a porous silicon carbide foam. As the temperature is held constant, the particulate sample is rotated 180 degrees around a horizontal axis every 15 seconds from a low position to a higher position so that the particulates fall and abrade against each other. This process is repeated for a known number of cycles (many thousands). Then the resulting particulate size distribution is measured to determine the amount of attrition and sintering occurred during the experiment. The particulates tested are various types of sand with varying mean diameters and composition, along with a ceramic particulate similar to hydraulic fracturing proppants. Sample composition, sample size distribution, and temperature will be used to establish parameters for rates of attrition and sintering. These rates will be used to predict the behavior of particulates in a concentrated solar power tower closed cycle.
Journal Articles
Hany Al-Ansary, Abdelrahman El-Leathy, Zeyad Al-Suhaibani, Sheldon Jeter, Dennis Sadowski, Abdulaziz Alrished, Matthew Golob
Journal:
Journal of Solar Energy Engineering
Article Type: Research-Article
J. Sol. Energy Eng. November 2012, 134(4): 041017.
Published Online: October 19, 2012
Abstract
An experimental study of the heat transfer characteristics of the bulk flow of sand in a sand–air heat exchanger is conducted. The study is conducted in the context of the development of a high-temperature solar gas turbine (HTSGT) system. This system is being developed by King Saud University and the Georgia Institute of Technology with the aim of demonstrating the feasibility of using sand as the heat transfer and energy storage medium in central receiver systems. Experiments are conducted on silica sand and olivine sand, both of which are attractive options due to their wide availability. The apparatus includes a tube bank consisting of eight electrically heated tubes arranged in three rows in a staggered formation. Heat transfer coefficient results are reported for bare and finned tubes for sand feed velocities of 1–3 mm/s. They were found in the range of 80–160 W/m2 K.