Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-1 of 1
A. M. Chemarev
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
S. V. Stefanovsky, A. G. Ptashkin, Y. M. Kuliako, S. A. Perevalov, S. V. Yudintsev, A. M. Chekmarev, A. V. Ochkin, A. M. Chemarev
Proc. ASME. ICEM2003, 9th ASME International Conference on Radioactive Waste Management and Environmental Remediation: Volumes 1, 2, and 3, 1243-1248, September 21–25, 2003
Paper No: ICEM2003-4673
Abstract
Actinide wastes involve actinide or rare earth–actinide fractions of high level waste (HLW), Pu-contaminated materials, including incinerator ashes, excess weapons plutonium, and some wastes formed during plutonium conversion in MOX fuel and nuclear accidents. SIA Radon in cooperation with Vernadsky Institute of Geochemistry, Institute of Geology of Ore Deposits, and D. Mendeleev University of Chemical Technology deals with development and testing of actinide waste forms and preparation methods. Zirconolite, pyrochlore, and murataite are considered as host phases for plutonium and other actinides. Two-phase ceramics based on zirconolite-perovskite, pyrochlore-perovskite, perovskite–cubic zirconia-based solid solution, murataite-perovskite, and zirconolite-murataite assemblages were designed for incorporation of actinide and rare earth–actinide fractions of HLW. Glass-ceramics containing apatite-britholite phases have been proposed for incinerator ash fixation. All these matrices have high chemical durability and radiation stability. The most promising method for production of these waste forms is an inductive melting in a cold crucible. Cold pressing and sintering technology is considered as alternative route. Mechanical activation intensifies ceramization process and reduces sintering temperature. Some new methods such as selfsustaining synthesis and plasma melting are being also examined.