Federal regulations require refuge alternatives (RAs) in underground coal mines to provide a life-sustaining environment for miners trapped underground when escape is impossible. A breathable air supply is among those requirements. For built-in-place (BIP) RAs, a borehole air supply (BAS) is commonly used to supply fresh air from the surface. Federal regulations require that such a BAS must supply fresh air at 12.5 cfm or more per person to maintain the oxygen concentration between 18.5% to 23% and carbon dioxide level below the 1% limit specified. However, the minimal fresh air flow (FAF) rate needed to maintain the 1% CO2 level will depend on multiple factors. In the past, to predict the interior CO2 concentration in an occupied RA, 96-hour tests were performed using a physical human breathing simulator. However, given the infinite possibility of the combinations, it would be impractical to fully investigate the range of parameters that can affect the CO2 concentration using physical tests. In this paper, researchers at the National Institute for Occupational Safety and Health (NIOSH) developed a model that can predict how the %CO2 in an occupied confined space changes with time. The model was then compared to and validated with test data. The benchmarked model can be used to predict the %CO2 for any number of people and FAF rate without conducting a 96-hour test. The methodology used in this model can also be used to estimate other gas levels within a confined space.

This content is only available via PDF.
You do not currently have access to this content.