Abstract

Robust design optimization of stochastic black-box functions is a challenging task in engineering practice. Crashworthiness optimization qualifies as such problem especially with regards to the high computational costs. Moreover, in early design phases, there may be significant uncertainty about the numerical model parameters. Therefore, this paper proposes an adaptive surrogate-based strategy for robust design optimization of noise-contaminated models under lack-of-knowledge uncertainty. This approach is a significant extension to the robustness under lack-of-knowledge method (RULOK) previously introduced by the authors, which was limited to noise-free models. In this work, it is proposed to use a Gaussian Process as a regression model based on a noisy kernel. The learning process is adapted to account for noise variance either imposed and known or empirically learned as part of the learning process. The method is demonstrated on three analytical benchmarks and one engineering crashworthiness optimization problem. In the case studies, multiple ways of determining the noise kernel are investigated: (1) based on a coefficient of variation, (2) calibration in the Gaussian Process model, (3) based on engineering judgment, including a study of the sensitivity of the result with respect to these parameters. The results highlight that the proposed method is able to efficiently identify a robust design point even with extremely limited or biased prior knowledge about the noise.

References

1.
Taguchi
,
G.
,
1995
, “
Quality Engineering (Taguchi Methods) for the Development of Electronic Circuit Technology
,”
IEEE Trans. Reliab.
,
44
(
2
), pp.
225
229
.10.1109/24.387375
2.
Taguchi
,
G.
,
1978
, “
Performance Analysis Design
,”
Int. J. Prod. Res.
,
16
(
6
), pp.
521
530
.10.1080/00207547808930043
3.
Beer
,
M.
, and
Liebscher
,
M.
,
2008
, “
Designing Robust Structures–a Nonlinear Simulation Based Approach
,”
Comput. Struct.
,
86
(
10
), pp.
1102
1122
.10.1016/j.compstruc.2007.05.037
4.
Beck
,
A. T.
,
Gomes
,
W. J.
, and
Bazán
,
F. A.
,
2012
, “
On the Robustness of Structural Risk Optimization With Respect to Epistemic Uncertainties
,”
Int. J. Uncertainty Quantif.
,
2
(
1
), pp.
1
20
.10.1615/Int.J.UncertaintyQuantification.v2.i1.20
5.
van Mierlo
,
C.
,
Persoons
,
A.
,
Faes
,
M. G.
, and
Moens
,
D.
,
2023
, “
Robust Design Optimisation Under Lack-of-Knowledge Uncertainty
,”
Comput. Struct.
,
275
, p.
106910
.10.1016/j.compstruc.2022.106910
6.
Zang
,
C.
,
Friswell
,
M.
, and
Mottershead
,
J.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4–5
), pp.
315
326
.10.1016/j.compstruc.2004.10.007
7.
Hu
,
N.
, and
Duan
,
B.
,
2018
, “
An Efficient Robust Optimization Method With Random and Interval Uncertainties
,”
Struct. Multidiscip. Optim.
,
58
(
1
), pp.
229
243
.10.1007/s00158-017-1892-0
8.
Mitseas
,
I. P.
,
Kougioumtzoglou
,
I. A.
,
Beer
,
M.
,
Patelli
,
E.
, and
Mottershead
,
J. E.
,
2014
, “
Robust Design Optimization of Structural Systems Under Evolutionary Stochastic Seismic Excitation
,” Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management, pp.
215
224
.
9.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
.10.1016/j.cma.2008.11.007
10.
Faes
,
M.
,
Broggi
,
M.
,
Patelli
,
E.
,
Govers
,
Y.
,
Mottershead
,
J.
,
Beer
,
M.
, and
Moens
,
D.
,
2019
, “
A Multivariate Interval Approach for Inverse Uncertainty Quantification With Limited Experimental Data
,”
Mech. Syst. Signal Process.
,
118
, pp.
534
548
.10.1016/j.ymssp.2018.08.050
11.
Hanss
,
M.
,
2005
,
Applied Fuzzy Arithmetic
,
Springer
Verlag, Berlin/Heidelberg.
12.
Ben-Haim
,
Y.
,
2006
,
Info-Gap Decision Theory: Decisions Under Severe Uncertainty
,
Elsevier
, Amsterdam, The Netherlands.
13.
Faes
,
M. G.
,
Daub
,
M.
,
Marelli
,
S.
,
Patelli
,
E.
, and
Beer
,
M.
,
2021
, “
Engineering Analysis With Probability Boxes: A Review on Computational Methods
,”
Struct. Saf.
,
93
, p.
102092
.10.1016/j.strusafe.2021.102092
14.
Beer
,
M.
,
Ferson
,
S.
, and
Kreinovich
,
V.
,
2013
, “
Imprecise Probabilities in Engineering Analyses
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
4
29
.10.1016/j.ymssp.2013.01.024
15.
Teixeira
,
R.
,
Nogal
,
M.
, and
O'Connor
,
A.
,
2021
, “
Adaptive Approaches in Metamodel-Based Reliability Analysis: A Review
,”
Struct. Saf.
,
89
, p.
102019
.10.1016/j.strusafe.2020.102019
16.
Dang
,
C.
,
Wei
,
P.
,
Faes
,
M. G.
,
Valdebenito
,
M. A.
, and
Beer
,
M.
,
2022
, “
Parallel Adaptive Bayesian Quadrature for Rare Event Estimation
,”
Reliab. Eng. Syst. Saf.
,
225
, p.
108621
.10.1016/j.ress.2022.108621
17.
Duddeck
,
F.
,
2008
, “
Multidisciplinary Optimization of Car Bodies
,”
Struct. Multidiscip. Optim.
,
35
(
4
), pp.
375
389
.10.1007/s00158-007-0130-6
18.
Kleijnen
,
J. P.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.10.1016/j.ejor.2007.10.013
19.
van Mierlo
,
C.
,
Burmberger
,
L.
,
Daub
,
M.
,
Duddeck
,
F.
,
Faes
,
M. G.
, and
Moens
,
D.
,
2022
, “
Interval Methods for Lack-of-Knowledge Uncertainty in Crash Analysis
,”
Mech. Syst. Signal Process.
,
168
, p.
108574
.10.1016/j.ymssp.2021.108574
20.
Andricevic
,
N.
,
Duddeck
,
F.
, and
Hiermaier
,
S.
,
2016
, “
A Novel Approach for the Assessment of Robustness of Vehicle Structures Under Crash
,”
Int. J. Crashworthiness
,
21
(
2
), pp.
89
103
.10.1080/13588265.2015.1125618
21.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
, Prentice Hall, Pearson Education Inc., Upper Saddle River, NJ.
22.
Bathe
,
K.
, and
Wilson
,
E.
,
1972
, “
Stability and Accuracy Analysis of Direct Integration Methods
,”
Earthquake Eng. Struct. Dyn.
,
1
(
3
), pp.
283
291
.10.1002/eqe.4290010308
23.
Toropov
,
V. V.
,
Schramm
,
U.
,
Sahai
,
A.
,
Jones
,
R. D.
, and
Zeguer
,
T.
,
2005
, “
Design Optimization and Stochastic Analysis Based on the Moving Least Squares Method
,”
Sixth World Congress on Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil, May 30-June 3.https://mae.ufl.edu/haftka/eoed/protected/movingleast-squares.pdf
24.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. South. Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.
25.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
26.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.10.2514/2.1234
27.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
28.
Picheny
,
V.
, and
Ginsbourger
,
D.
,
2014
, “
Noisy Kriging-Based Optimization Methods: A Unified Implementation Within the Diceoptim Package
,”
Comput. Stat. Data Anal.
,
71
, pp.
1035
1053
.10.1016/j.csda.2013.03.018
29.
Kleijnen
,
J. P.
,
2017
, “
Regression and Kriging Metamodels With Their Experimental Designs in Simulation: A Review
,”
Eur. J. Oper. Res.
,
256
(
1
), pp.
1
16
.10.1016/j.ejor.2016.06.041
30.
Moore
,
R. E.
,
1966
,
Interval Analysis
, Vol.
4
,
Prentice Hall
,
Englewood Cliffs, NJ
.
31.
Faes
,
M.
, and
Moens
,
D.
,
2020
, “
Recent Trends in the Modeling and Quantification of Non-Probabilistic Uncertainty
,”
Arch. Comput. Methods Eng.
,
27
(
3
), pp.
633
671
.10.1007/s11831-019-09327-x
32.
De Munck
,
M.
,
Moens
,
D.
,
Desmet
,
W.
, and
Vandepitte
,
D.
,
2009
, “
An Efficient Response Surface Based Optimisation Method for Non-Deterministic Harmonic and Transient Dynamic Analysis
,”
Comput. Model. Eng. Sci.
,
47
(
2
), pp.
119
166
.
33.
Faes
,
M.
,
Sadeghi
,
J.
,
Broggi
,
M.
,
De Angelis
,
M.
,
Patelli
,
E.
,
Beer
,
M.
, and
Moens
,
D.
,
2019
, “
On the Robust Estimation of Small Failure Probabilities for Strong Nonlinear Models
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
5
(
4
), p.
041007
.10.1115/1.4044044
34.
Bogaerts
,
L.
,
Faes
,
M.
, and
Moens
,
D.
,
2019
, “
A Fast Inverse Approach for the Quantification of Set-Theoretical Uncertainty
,”
2019 IEEE Symposium Series on Computational Intelligence
(
SSCI
),
IEEE
, Xiamen, China, Dec. 6–9, pp.
768
775
.10.1109/SSCI44817.2019.9002995
35.
Crespo
,
L. G.
,
Giesy
,
D. P.
, and
Kenny
,
S. P.
,
2014
, “
Interval Predictor Models With a Formal Characterization of Uncertainty and Reliability
,”
53rd IEEE Conference on Decision and Control
,
IEEE
, Los Angeles, CA, Dec. 15–17, pp.
5991
5996
.10.1109/CDC.2014.7040327
36.
Qiu
,
Z.
, and
Elishakoff
,
I.
,
1998
, “
Antioptimization of Structures With Large Uncertain-but-Non-Random Parameters Via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
(
3–4
), pp.
361
372
.10.1016/S0045-7825(96)01211-X
37.
Moens
,
D.
, and
Hanss
,
M.
,
2011
, “
Non-Probabilistic Finite Element Analysis for Parametric Uncertainty Treatment in Applied Mechanics: Recent Advances
,”
Finite Elements in Anal. Des.
,
47
(
1
), pp.
4
16
.10.1016/j.finel.2010.07.010
38.
Lataniotis
,
C.
,
Wicaksono
,
D.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2021
, “
UQLab User Manual – Kriging (Gaussian Process Modeling)
,” Chair of Risk, Safety and Uncertainty Quantification,
ETH Zurich
,
Switzerland
, Report No.
UQLab-V1.4-105
.https://www.researchgate.net/publication/280715099_UQLAB_User_Manual_-_Kriging_Gaussian_process_modelling
39.
Rasmussen
,
C. E.
,
2003
, “
Gaussian Processes in Machine Learning
,”
Summer School on Machine Learning
,
Springer
, New York, pp.
63
71
.
40.
Santner
,
T. J.
,
Williams
,
B. J.
,
Notz
,
W. I.
, and
Williams
,
B. J.
,
2003
,
The Design and Analysis of Computer Experiments
, 1,
Springer
, New York.
41.
Alvarez
,
M. A.
,
Rosasco
,
L.
, and
Lawrence
,
N. D.
,
2012
, “Kernels for Vector-Valued Functions: A Review,” Foundations and Trends® in Machine Learning, 4(3), pp.
195
266
.
42.
Faes
,
M. G.
,
Broggi
,
M.
,
Spanos
,
P. D.
, and
Beer
,
M.
,
2022
, “
Elucidating Appealing Features of Differentiable Auto-Correlation Functions: A Study on the Modified Exponential Kernel
,”
Probab. Eng. Mech.
,
69
, p.
103269
.10.1016/j.probengmech.2022.103269
43.
NHTSA
,
2020
, “
Crash simulation vehicle models
,” National Highway Traffic Safety Administration, accessed Feb. 2, https://www.nhtsa.gov/crash-simulation-vehicle-models
44.
Barzanooni
,
R.
,
van Mierlo
,
C.
,
Pabst
,
M.
,
Boegle
,
C.
,
Faes
,
M.
,
Moens
,
D.
, and
Duddeck
,
F.
,
2022
, “
Evaluation of Uncertain Boundary Conditions for Analysis of Structural Components With Respect to Crashworthiness
,” Online Proceedings
ISMA2022-USD2022
, Leuven, Belgium, Sept. 12–14.https://www.researchgate.net/publication/363586153_Evaluation_of_uncertain_boundary_conditions_for_analysis_of_structural_components_with_respect_to_crashworthiness
45.
Lataniotis
,
C.
,
Wicaksono
,
D.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2022
, “
UQLab User Manual – Kriging (Gaussian Process Modeling)
,” Tech. rep., Chair of Risk, Safety and Uncertainty Quantification,
ETH Zurich
,
Switzerland
, Report No. UQLab-V2.0-105.
46.
MathWorks
,
2020
, “
Matlab and Statistics and Machine Learning Toolbox Release 2020b
,” accessed Mar. 7, 2023, https://nl.mathworks.com/help/stats/fitrgp.html
You do not currently have access to this content.