Abstract

Important facilities constructed during last decades of 20th century are near completion of design life. For extending their service life or to evaluate these for new demands (loads), assessment of strength of concrete in existing structure becomes necessary, a task generally performed with nondestructive tests (NDT); ultrasonic pulse velocity (USPV) and rebound hammer being most commonly executed. Compressive strength is estimated using empirical expressions relating NDT to partially destructive tests (PDT) such as core test. For the development of structure-specific expressions, results of adequate number (depending on variability and desired confidence level) of PDT are essential but these might not be available due to operational constraints. Correlation expressions from literature could be used in such cases but having been developed for different ingredients, curing regimes, and environmental exposure conditions, there would be associated uncertainties. A practical method for the estimation of these uncertainties is not readily available in the literature. This article proposes the statistical approach of resampling for quantifying the uncertainty of indirect strength estimates using expressions from literature. Parametric (probability distribution) and nonparametric (bootstrap) tools are employed and demonstrated with a case study from India. Both parametric and nonparametric approaches could capture across-member variability whereas overall uncertainty incorporation, as well as repeatability, was better in nonparametric approach. Parametric approach is traditionally used and well accepted by practitioners in contrast to nonparametric methods, which have certain advantages. The detailed methodology enumerated in the article would be very useful for practitioners across the world.

References

1.
Dauji
,
S.
, and
Kulkarni
,
A.
,
2021
, “
Fire Resistance and Elevated Temperature in Reinforced Concrete Members: Research Needs for India
,”
J. Inst. Eng. (India) Ser. A
,
102
(
1
), pp.
315
333
.10.1007/s40030-021-00513-4
2.
Choudhary
,
H. R.
,
Dauji
,
S.
, and
Siddiqui
,
A.
,
2020
, “
Effect of Clay as Deleterious Material on Properties of nor-Mal-Strength Concrete
,”
J. Asian Concrete Federation
,
6
(
1
), pp.
10
25
.10.18702/acf.2020.6.6.10
3.
Dauji
,
S.
,
Bhalerao
,
S.
,
Srivastava
,
P. K.
, and
Bhargava
,
K.
,
2019
, “
Conservative Characteristic Strength of Concrete From Non-Destructive and Partially Destructive Testing
,”
J. Asian Concrete Federation
,
5
(
1
), pp.
25
39
.10.18702/acf.2019.06.30.25
4.
Bureau of Indian Standard
,
2000
, “
Plain and Reinforced Concrete - Code of Practice (Fourth Revision, Reaffirmed 2005
),” BIS, New Delhi, India, IS 456: 2000.
5.
Bureau of Indian Standard
,
2018
, “
Hardened Concrete – Methods of Test, Part 5: Non-Destructive Testing of Concrete, Section 1: Ultrasonic Pulse Velocity Testing
,” BIS, New Delhi, India, IS 516 (Part 5/Sec 1): 2018.
6.
Bureau of Indian Standard
,
2020
, “
Hardened Concrete – Methods of Test, Part 5: Non-Destructive Testing of Concrete, Section 4: Rebound Hammer Test
,” BIS, New Delhi, India, IS 516 (Part 5/Sec 4): 2020.
7.
European Committee for Standardization (CEN)
,
2007
, “
Assessment of in-Situ Compressive Strength in Structures and Precast Concrete Components
,” CEN, Brussels, EN 13791: 2007 E.
8.
American Concrete Institute
,
2013
, “
Report on Nondestructive Test Methods for Evaluation of Concrete in Structures
,” ACI Committee 228, Farmington Hills, MI, ACI 228.2R-13.
9.
American Concrete Institute
,
2003
, “
Strength Evaluation of Existing Concrete Buildings
,” ACI Committee 437, Farmington Hills, MI, ACI 437R-03.
10.
Ali-Benyahia
,
K.
,
Sbartaï
,
Z.-M.
,
Breysse
,
D.
,
Kenai
,
S.
, and
Ghrici
,
M.
,
2017
, “
Analysis of the Single and Combined Non-Destructive Test Approaches for on-Site Concrete Strength Assessment: General Statements Based on a Real Case-Study
,”
Case Stud. Constr. Mater.
,
6
, pp.
109
119
.10.1016/j.cscm.2017.01.004
11.
American Concrete Institute
,
2010
, “
Guide to Obtaining Cores and Interpreting Compressive Strength Results
,” ACI Committee 214, Farmington Hills, MI, ACI 214.4R-10.
12.
Wiyanto
,
H.
,
Chang
,
J.
, and
Dennis
,
Y.
,
2020
, “
Concrete Structure Condition Rating in Buildings With Non-Destructive Testing
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
852
(
1
), p.
012058
.10.1088/1757-899X/852/1/012058
13.
Masi
,
A.
, and
Chiauzzi
,
L.
,
2013
, “
An Experimental Study on the Within-Member Variability of in Situ Concrete Strength in RC Building Structures
,”
Constr. Buil. Mater.
,
47
, pp.
951
961
.10.1016/j.conbuildmat.2013.05.102
14.
Neville
,
A. M.
,
1996
,
Properties of Concrete
, ELBS 4th ed.,
Addison Wesley
,
Longman, Malaysia
.
15.
Dauji
,
S.
, and
Bhargava
,
K.
,
2018
, “
Comparison of Concrete Strength From Cube and Core Records by Bootstrap
,”
J. Asian Concrete Fed.
,
4
(
1
), pp.
35
46
.10.18702/acf.2018.07.3.1.35
16.
Dauji
,
S.
, and
Bhargava
,
K.
,
2016
, “
Estimation of Concrete Characteristic Strength From Limited Data by Bootstrap
,”
J. Asian Concrete Fed.
,
2
(
1
), pp.
81
94
.10.18702/acf.2016.06.2.1.81
17.
Karahan
,
Ş.
,
Büyüksaraç
,
A.
, and
Işık
,
E.
,
2020
, “
The Relationship Between Concrete Strengths Obtained by Destructive and Non‐Destructive Methods
,”
Iranian J. Sci. Technol. Trans. Civ. Eng.
,
44
(
1
), pp.
91
105
.10.1007/s40996-019-00334-3
18.
Jain
,
A.
,
Kathuria
,
A.
,
Kumar
,
A.
,
Verma
,
Y.
, and
Murari
,
K.
,
2013
, “
Combined Use of Non-Destructive Tests for Assessment of Strength of Concrete in Structure
,”
Proceedia Eng.
,
54
, pp.
241
251
.10.1016/j.proeng.2013.03.022
19.
Trtnik
,
G.
,
Kavcic
,
F.
, and
Turk
,
G.
,
2009
, “
Prediction of Concrete Strength Using Ultrasonic Pulse Velocity and Artificial Neural Networks
,”
Ultrasonics
,
49
(
1
), pp.
53
60
.10.1016/j.ultras.2008.05.001
20.
Nasht
,
I. H.
,
Abour
,
S. H.
, and
Sadoon
,
A. A.
,
2005
, “
Finding an Unified Relationship Between Crushing Strength of Concrete and Non-Destructive Tests
,”
Proceedings of Middle East Nondestructive Testing Conference and Exhibition
, 27–30 November 2005, Bahrain, Manamahttps://www.ndt.net/article/mendt2005/pdf/p04.pdf.
21.
Bilgehan
,
M.
, and
Turgut
,
P.
,
2010
, “
Artificial Neural Network Approach to Predict Compressive Strength of Concrete Through Ultrasonic Pulse Velocity
,”
Res. Nondestr. Eval.
,
21
(
1
), pp.
1
17
.10.1080/09349840903122042
22.
Kheder
,
G. F.
,
1999
, “
A Two Stage Procedure for Assessment of in Situ Concrete Strength Using Combined Nondestructive Testing
,”
Mater. Struct.
,
32
(
6
), pp.
410
417
.10.1007/BF02482712
23.
Poorarbabi
,
A.
,
Ghasemi
,
M.
, and
Moghaddam
,
M. A.
,
2020
, “
Concrete Compressive Strength Prediction Using Non-Destructive Tests Through Response Surface Methodology
,”
Ain Shams Eng. J.
,
11
(
4
), pp.
939
949
.10.1016/j.asej.2020.02.009
24.
Patil
,
D. S. G.
,
2017
, “
Correlation Between Actual Compressive Strength of Concrete and Strength Estimated From Core
,”
IOSR J. Mech. Civ. Eng.
,
14
(
02
), pp.
27
44
.10.9790/1684-1402032744
25.
Proceq
,
2010
, “
Silver Schmidt Reference Curve
,” Silver Schmidt Manual. Available at: https://www.pcte.com.au/silver-schmidt-rebound-hammer (accessed in May 2021).
26.
Qwasrawi
,
Y. H.
,
2000
, “
Concrete Strength by Combined Non-Destructive Methods Simply and Reliably Predicted
,”
J. Cem. Concrete Res.
,
30
, pp.
739
746
.10.1016/S0008-8846(00)00226-X
27.
Agunwamba
,
J. C.
, and
Adagba
,
T.
,
2012
, “
A Comparative Analysis of the Rebound Hammer and Ultrasonic Pulse Velocity in Testing Concrete
,”
Nigerian J. Technol.
,
31
(
1
), pp.
31
3
.https://www.ajol.info/index.php/njt/article/view/123556
28.
Lal
,
T.
,
Sharma
,
S.
, and
Naval
,
S.
,
2013
, “
Reliability of Non-Destructive Tests for Hardened Concrete Strength
,”
Int. J. Eng. Res. Technol.
,
2
(
3
), pp.
1
7
.https://www.ijert.org/research/reliability-of-non-destructive-tests-for-hardened-concrete-strength-IJERTV2IS3556.pdf
29.
Samson
,
D.
,
Omoniyi
,
G. F.
, and
Moses
,
T.
,
2014
, “
Correlation Between Non-Destructive Testing and Destructive Testing of Compressive Strength of Concrete
,”
Int. J. Eng. Sci. Invent.
,
3
(
9
), pp.
12
17
.http://www.ijesi.org/papers/Vol(3)9/Version-1/B0391012017.pdf
30.
Raouf
,
Z.
, and
Ali
,
Z. M.
,
1983
, “
Assessment of Concrete Characteristics at an Early Age by Ultrasonic Pulse Velocity
,”
J. Build. Res.
,
2
(
1
), pp.
31
44
.
31.
Gehlot
,
T.
,
Sankhla
,
S. S.
,
Gehlot
,
S.
, and
Gupta
,
A.
,
2016
, “
Study of Concrete Quality Assessment of Structural Using Ultrasonic Pulse Velocity Test
,”
IOSR J. Mech. Civ. Eng.
,
13
(
05
), pp.
15
22
.10.9790/1684-1305071522
32.
Turgut
,
P.
,
2004
, “
Research Into the Correlation Between Concrete Strength and UPV Values
,”
NDT.net
,
12
(
12
), pp.
1
6
.
33.
Meynink
,
P.
, and
Samarin
,
A.
,
1979
, “
Assessment of Compressive Strength of Concrete by Cylinders, Cores and Non-Destructive Tests
,”
Proceedings of RILEM Symposium on Quality Control of Concrete Structures
, Session 2.1, Swedish Concrete Research Institute Stockholm, Sweden, pp.
127
134.
34.
Tanigawa
,
Y.
,
Baba
,
K.
, and
Mori
,
H.
,
1984
, “
Estimation of Concrete Strength by Combined Non-Destructive Testing Method
,”
ACI SP
,
82
(
1
), pp.
57
65
.https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/6549
35.
Arioglu
,
E.
, and
Manzak
,
O.
,
1991
, “
Application of ‘Sonreb’ Method to Concrete Samples Produced in Yedpa Construction Site
,”
Prefabr. Union, (in Turkish)
, pp.
5
12
.
36.
Arioglu
,
E.
,
Odbay
,
O.
,
Alper
,
H.
, and
Arioglu
,
B.
,
1994
, “
A New Formula and Application Results for Prediction of Concrete Compressive Strength by Combined Non-Destructive Method
,”
Assoc. Prefabr. Manuf., Concr. Prefabr., (in Turkish)
,
28
, pp.
5
11
.
37.
Ramyar
,
K.
, and
Kol
,
P.
,
1996
, “
Destructive and Non-Destructive Test Methods for Estimating the Strength of Concrete
,”
Cem. Concr. World
, (in Turkish),
2
, pp.
46
54
.
38.
Arioglu
,
E.
, and
Koyluoglu
,
O.
,
1996
, “
Discussion of Prediction of Concrete Strength by Destructive and Non-Destructive Methods by Ramyar and Kol
,”
Cem. Concrete World, (in Turkish)
,
3
, pp.
33
34
.
39.
Cristofaro
,
M. T.
,
Viti
,
S.
, and
Tanganelli
,
M.
,
2020
, “
New Predictive Models to Evaluate Concrete Compressive Strength Using the SonReb Method
,”
J. Build. Eng.
,
27
, p.
100962
.10.1016/j.jobe.2019.100962
40.
Breccolotti
,
M.
, and
Bonfigli
,
M. F.
,
2015
, “
I-SonReb: An Improved NDT Method to Evaluate the in Situ Strength of Carbonated Concrete
,”
Nondestr. Test. Eval.
,
30
(
4
), pp.
327
346
.10.1080/10589759.2015.1046872
41.
Breccolotti
,
M.
,
Bonfigli
,
M. F.
, and
Materazzi
,
A. L.
,
2018
, “
SonReb Concrete Assessment for Spatially Correlated NDT Data
,”
Constr. Build. Mater.
,
192
, pp.
391
402
.10.1016/j.conbuildmat.2018.10.134
42.
Bureau of Indian Standard
,
1978
, “
Criteria for the Rejection of Outlying Observations (Reaffirmed 2010)
,” BIS, New Delhi, India, IS 8900: 1978.
43.
Barnett
,
V.
, and
Lewis
,
T.
,
1978
,
Outliers in Statistical Data
,
Wiley
,
UK
.
44.
Ayyub
,
B. M.
, and
McCuen
,
R. H.
,
1997
,
Probability, Statistics, & Reliability for Engineers
,
CRC Press
,
Boca Raton, Florida
.
45.
Ranganathan
,
R.
,
1999
,
Structural Reliability: Analysis and Design
,
Jaico Publishing House
,
Mumbai, India
.
46.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
47.
Bureau of Indian Standard
,
2013
, “
Seismic Evaluation and Strengthening of Existing Concrete Buildings – Guidelines
,” BIS, New Delhi, India, IS 15988: 2013.
48.
Bureau of Indian Standard
,
2019
, “
Concrete Mix Proportioning - Guidelines
,” BIS, New Delhi, India, IS 10262: 2019.
49.
Efron
,
B.
, and
Tibshirani
,
R. J.
,
1998
,
An Introduction to the Bootstrap
,
Chapman & Hall/CRC
,
Boca Raton
.
50.
Dauji
,
S.
, and
Bhargava
,
K.
,
2018
, “
Neural Estimation of Bond Strength Degradation in Concrete Affected by Reinforcement Corrosion
,”
INAE Lett.
,
3
(
4
), pp.
203
215
.10.1007/s41403-018-0050-3
51.
Dauji
,
S.
,
2018
, “
Neural Prediction of Concrete Compressive Strength
,”
Int. J. Mater. Struct. Integ.
,
12
(
1/2/3
), pp.
17
35
.10.1504/IJMSI.2018.093884
52.
Dauji
,
S.
,
2019
, “
Estimation of Corrosion Current Density From Resistivity of Concrete With Neural Network
,”
INAE Lett.
,
4
(
2
), pp.
111
121
.10.1007/s41403-019-00071-z
53.
Dauji
,
S.
,
2020
, “
Prediction of Concrete Spall Damage Under Blast: Neural Approach With Synthetic Data
,”
Comput. Concrete
,
26
(
6
), pp.
533
546
.10.12989/cac.2020.26.6.533
54.
Ang
,
A. H. S.
, and
Tang
,
W. H.
,
2007
,
Probability Concepts in Engineering – Emphasis on Applications in Civil and Environmental Engineering
,
Wiley, Inc
,
New Jersey
.
You do not currently have access to this content.