Abstract

The improvements in wind energy infrastructure have been a constant process throughout many decades. There are new advancements in technology that can further contribute toward the prognostics and health management (PHM) in this industry. These advancements are driven by the need to fully explore the impact of uncertainty, quality and quantity of data, physics-based machine learning (PBML), and digital twin (DT). All these aspects need to be taken into consideration to perform an effective PHM of wind energy infrastructure. To address these aspects, four research questions were formulated. What is the role of uncertainty in machine learning (ML) in diagnostics and prognostics? What is the role of data augmentation and quality of data for ML? What is the role of PBML? What is the role of the DT in diagnostics and prognostics? The methodology used was Preferred Reporting Items for Systematic Review and Meta-Analysis. A total of 143 records, from the last five years, were analyzed. Each of the four questions was answered by discussion of literature, definitions, critical aspects, benefits and challenges, the role of aspect in PHM of wind energy infrastructure systems, and conclusion.

References

1.
Chen
,
P.
,
Li
,
Y.
,
Wang
,
K.
,
Zuo
,
M. J.
,
Heyns
,
P. S.
, and
Baggeröhr
,
S.
,
2020
, “
A Threshold Self-Setting Condition Monitoring Scheme for Wind Turbine Generator Bearings Based on Deep Convolutional Generative Adversarial Networks
,”
Meas.: J. Int. Meas. Confed.
,
167
, p.
108234
.10.1016/j.measurement.2020.108234
2.
Zhang
,
Y.
,
Li
,
M.
,
Dong
,
Z. Y.
, and
Meng
,
K.
,
2019
, “
A Probabilistic Anomaly Detection Approach for Data-Driven Wind Turbine Condition Monitoring
,”
CSEE J. Power Energy Syst.
,
5
(
2
), pp.
149
158
.10.17775/CSEEJPES.2019.00010
3.
Pandit
,
R. K.
,
Kolios
,
A.
, and
Infield
,
D.
,
2020
, “
Data-Driven Weather Forecasting Models Performance Comparison for Improving Offshore Wind Turbine Availability and Maintenance
,”
IET Renewable Power Gener.
,
14
(
13
), pp.
2386
2394
.10.1049/iet-rpg.2019.0941
4.
Mousavi
,
Z.
,
Ettefagh
,
M. M.
,
Sadeghi
,
M. H.
, and
Razavi
,
S. N.
,
2020
, “
Developing Deep Neural Network for Damage Detection of Beam-Like Structures Using Dynamic Response Based on FE Model and Real Healthy State
,”
Appl. Acoust.
,
168
, p.
107402
.10.1016/j.apacoust.2020.107402
5.
Alves
,
D. S.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
.10.1016/j.mechmachtheory.2020.103835
6.
Wang
,
B.
,
Lei
,
Y.
,
Yan
,
T.
,
Li
,
N.
, and
Guo
,
L.
,
2020
, “
Recurrent Convolutional Neural Network: A New Framework for Remaining Useful Life Prediction of Machinery
,”
Neurocomputing
,
379
, pp.
117
129
.10.1016/j.neucom.2019.10.064
7.
Pandit
,
R.
, and
Kolios
,
A.
,
2020
, “
SCADA Data-Based Support Vector Machine Wind Turbine Power Curve Uncertainty Estimation and Its Comparative Studies
,”
Appl. Sci.
,
10
(
23
), p.
8685
.10.3390/app10238685
8.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2021
, “
Damage Classification of Composites Based on Analysis of Lamb Wave Signals Using Machine Learning
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
7
(
1
), p.
011002
.10.1115/1.4048867
9.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Nispel
,
A.
,
Alemayehu
,
F. M.
, and
Serwadda
,
A.
,
2019
, “
Machine Learning in Crack Size Estimation of a Spur Gear Pair Using Simulated Vibration Data
,”
Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM (Mechanisms and Machine Science)
,
K. L.
Cavalca
and
H. I.
Weber
, eds.,
Springer
,
Cham, Switzerland
, pp.
175
190
.
10.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2020
, “
Damage Detection of Composite Materials Using Data Fusion With Deep Neural Networks
,”
ASME
Paper No. GT2020-15097.10.1115/GT2020-15097
11.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Serwadda
,
A.
,
Alemayehu
,
F. M.
, and
Nispel
,
A.
,
2019
, “
Gearbox Fault Diagnostics Using Deep Learning With Simulated Data
,”
IEEE International Conference on Prognostics and Health Management
,
San Francisco, CA
,
June 17–20
, pp.
1
8
.
12.
Gecgel
,
O.
,
Dias
,
J. P.
,
Ekwaro-Osire
,
S.
,
Alves
,
D. S.
,
Machado
,
T. H.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
, and
Cavalca
,
K. L.
,
2020
, “
Simulation-Driven Deep Learning Approach for Wear Diagnostics in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
143
(
8
), p.
084501
.10.1115/1.4049067
13.
Jennings
,
R.
,
2019
, “
Development of Physics Based Machine Learning Algorithms
,” MS thesis,
Bucknell University
,
Lewisburg, PA
.
14.
Shettigar
,
A. K.
,
Patel
,
G. C. M.
,
Chate
,
G. R.
,
Vundavilli
,
P. R.
, and
Parappagoudar
,
M. B.
,
2020
, “
Artificial Bee Colony, Genetic, Back Propagation and Recurrent Neural Networks for Developing Intelligent System of Turning Process
,”
SN Appl. Sci.
,
2
(
4
), p.
660
.10.1007/s42452-020-2475-z
15.
Howland
,
M. F.
, and
Dabiri
,
J. O.
,
2019
, “
Wind Farm Modeling With Interpretable Physics-Informed Machine Learning
,”
Energies
,
12
(
14
), p.
2716
.10.3390/en12142716
16.
Sadoughi
,
M.
, and
Hu
,
C.
,
2019
, “
Physics-Based Convolutional Neural Network for Fault Diagnosis of Rolling Element Bearings
,”
IEEE Sens. J.
,
19
(
11
), pp.
4181
4192
.10.1109/JSEN.2019.2898634
17.
Viana
,
F. A. C.
, and
Subramaniyan
,
A. K.
,
2021
, “
A Survey of Bayesian Calibration and Physics-Informed Neural Networks in Scientific Modeling
,”
Arch. Comput. Methods Eng.
,
28
, pp.
3801
3830
.10.1007/s11831-021-09539-0
18.
Yucesan
,
Y. A.
, and
Viana
,
F. A. C.
,
2020
, “
A Physics-Informed Neural Network for Wind Turbine Main Bearing Fatigue
,”
Int. J. Prognostics Health Manage.
,
11
(
1
), pp.
1
17
.10.36001/ijphm.2020.v11i1.2594
19.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
.10.1109/TII.2018.2873186
20.
Qi
,
Q.
,
Tao
,
F.
,
Hu
,
T.
,
Anwer
,
N.
,
Liu
,
A.
,
Wei
,
Y.
,
Wang
,
L.
, and
Nee
,
A. Y. C.
,
2019
, “
Enabling Technologies and Tools for Digital Twin
,”
J. Manuf. Syst.
,
58
(
Pt. B
), pp.
3
21
.10.1016/j.jmsy.2019.10.001
21.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.10.1016/j.cirp.2018.04.055
22.
Branlard
,
E.
,
Jonkman
,
J.
,
Dana
,
S.
, and
Doubrawa
,
P.
,
2020
, “
A Digital Twin Based on OpenFAST Linearizations for Real-Time Load and Fatigue Estimation of Land-Based Turbines
,”
J. Phys.: Conf. Ser.
,
1618
(
2
), p.
022030
.10.1088/1742-6596/1618/2/022030
23.
Chen
,
X.
,
Eder
,
M. A.
,
Shihavuddin
,
A. S. M.
, and
Zheng
,
D.
,
2021
, “
A Human‐Cyber‐Physical System Toward Intelligent Wind Turbine Operation and Maintenance
,”
Sustainability
,
13
(
2
), p.
561
.10.3390/su13020561
24.
Ibrahim
,
M. S.
,
Fan
,
J.
,
Yung
,
W. K. C.
,
Prisacaru
,
A.
,
van Driel
,
W.
,
Fan
,
X.
, and
Zhang
,
G.
,
2020
, “
Machine Learning and Digital Twin Driven Diagnostics and Prognostics of Light-Emitting Diodes
,”
Laser Photonics Rev.
,
14
(
12
), p.
2000254
.10.1002/lpor.202000254
25.
Moya
,
B.
,
Badías
,
A.
,
Alfaro
,
I.
,
Chinesta
,
F.
, and
Cueto
,
E.
,
2020
, “
Digital Twins That Learn and Correct Themselves
,”
Int. J. Numer. Methods Eng.
, epub.10.1002/nme.6535
26.
Peng
,
W.
,
Ye
,
Z. S.
, and
Chen
,
N.
,
2020
, “
Bayesian Deep-Learning-Based Health Prognostics Toward Prognostics Uncertainty
,”
IEEE Trans. Ind. Electron.
,
67
(
3
), pp.
2283
2293
.10.1109/TIE.2019.2907440
27.
Fu
,
Q.
, and
Wang
,
H.
,
2020
, “
A Novel Deep Learning System With Data Augmentation for Machine Fault Diagnosis From Vibration Signals
,”
Appl. Sci.
,
10
(
17
), p.
5765
.10.3390/app10175765
28.
Prappacher
,
N.
,
Bullmann
,
M.
,
Bohn
,
G.
,
Deinzer
,
F.
, and
Linke
,
A.
,
2020
, “
Defect Detection on Rolling Element Surface Scans Using Neural Image Segmentation
,”
Appl. Sci.
,
10
(
9
), p.
3290
.10.3390/app10093290
29.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2021
, “
Fatigue Damage Diagnostics of Composites Using Data Fusion and Data Augmentation With Deep Neural Networks
,”
ASME J. Nondestr. Eval., Diagn. Prognostics Eng. Syst.
,
5
(
2
), p.
021004
.10.1115/1.4051947
30.
Schröder
,
L.
,
2020
, “
Towards Digital Twins: Wind Farm Operation Analysis and Optimization Using Modelsupported Data Analytics,” Ph.D. dissertation
,
Technical University of Denmark
,
Roskilde, Denmark
.
31.
Fuller
,
A.
,
Fan
,
Z.
,
Day
,
C.
, and
Barlow
,
C.
,
2020
, “
Digital Twin: Enabling Technologies, Challenges and Open Research
,”
IEEE Access
,
8
, pp.
108952
108971
.10.1109/ACCESS.2020.2998358
32.
Barricelli
,
B. R.
,
Casiraghi
,
E.
, and
Fogli
,
D.
,
2019
, “
A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications
,”
IEEE Access
,
7
, pp.
167653
167671
.10.1109/ACCESS.2019.2953499
33.
Moher
,
D.
,
Liberati
,
A.
,
Tetzlaff
,
J.
,
Altman
,
D. G.
,
Altman
,
D.
,
Antes
,
G.
,
Atkins
,
D.
, et al.,
2009
, “
Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement
,”
PLoS Med.
,
6
(
7
), p.
e1000097
.10.1371/journal.pmed.1000097
34.
Templier
,
M.
, and
Paré
,
G.
,
2018
, “
Transparency in Literature Reviews: An Assessment of Reporting Practices Across Review Types and Genres in Top IS Journals
,”
Eur. J. Inf. Syst.
,
27
(
5
), pp.
503
550
.10.1080/0960085X.2017.1398880
35.
Mousavi
,
Z.
,
Varahram
,
S.
,
Ettefagh
,
M. M.
,
Sadeghi
,
M. H.
, and
Razavi
,
S. N.
,
2021
, “
Deep Neural Networks-Based Damage Detection Using Vibration Signals of Finite Element Model and Real Intact State: An Evaluation Via a Lab-Scale Offshore Jacket Structure
,”
Struct. Health Monit.
,
20
(
1
), pp.
379
405
.10.1177/1475921720932614
36.
Liu
,
C.
,
Zhang
,
L.
,
Niu
,
J.
,
Yao
,
R.
, and
Wu
,
C.
,
2020
, “
Intelligent Prognostics of Machining Tools Based on Adaptive Variational Mode Decomposition and Deep Learning Method With Attention Mechanism
,”
Neurocomputing
,
417
, pp.
239
254
.10.1016/j.neucom.2020.06.116
37.
Li
,
Y.
,
Liu
,
S.
, and
Shu
,
L.
,
2019
, “
Wind Turbine Fault Diagnosis Based on Gaussian Process Classifiers Applied to Operational Data
,”
Renewable Energy
,
134
, pp.
357
366
.10.1016/j.renene.2018.10.088
38.
Martinez-Luengo
,
M.
,
Shafiee
,
M.
, and
Kolios
,
A.
,
2019
, “
Data Management for Structural Integrity Assessment of Offshore Wind Turbine Support Structures: Data Cleansing and Missing Data Imputation
,”
Ocean Eng.
,
173
, pp.
867
883
.10.1016/j.oceaneng.2019.01.003
39.
Pandit
,
R. K.
,
Infield
,
D.
, and
Kolios
,
A.
,
2020
, “
Gaussian Process Power Curve Models Incorporating Wind Turbine Operational Variables
,”
Energy Rep.
,
6
, pp.
1658
1669
.10.1016/j.egyr.2020.06.018
40.
Hu
,
Y.
,
Xi
,
Y.
,
Pan
,
C.
,
Li
,
G.
, and
Chen
,
B.
,
2020
, “
Daily Condition Monitoring of Grid-Connected Wind Turbine Via High-Fidelity Power Curve and Its Comprehensive Rating
,”
Renewable Energy
,
146
, pp.
2095
2111
.10.1016/j.renene.2019.08.043
41.
She
,
D.
, and
Jia
,
M.
,
2021
, “
A BiGRU Method for Remaining Useful Life Prediction of Machinery
,”
Meas.: J. Int. Meas. Confed.
,
167
, p.
108277
.10.1016/j.measurement.2020.108277
42.
Seventekidis
,
P.
,
Giagopoulos
,
D.
,
Arailopoulos
,
A.
, and
Markogiannaki
,
O.
,
2020
, “
Structural Health Monitoring Using Deep Learning With Optimal Finite Element Model Generated Data
,”
Mech. Syst. Signal Process.
,
145
, p.
106972
.10.1016/j.ymssp.2020.106972
43.
Karve
,
P. M.
,
Guo
,
Y.
,
Kapusuzoglu
,
B.
,
Mahadevan
,
S.
, and
Haile
,
M. A.
,
2020
, “
Digital Twin Approach for Damage-Tolerant Mission Planning Under Uncertainty
,”
Eng. Fract. Mech.
,
225
, p.
106766
.10.1016/j.engfracmech.2019.106766
44.
Hu
,
C. H.
,
Pei
,
H.
,
Si
,
X. S.
,
Du
,
D. B.
,
Pang
,
Z. N.
, and
Wang
,
X.
,
2020
, “
A Prognostic Model Based on DBN and Diffusion Process for Degrading Bearing
,”
IEEE Trans. Ind. Electron.
,
67
(
10
), pp.
8767
8777
.10.1109/TIE.2019.2947839
45.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.10.1137/16M1082469
46.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
.10.1007/s00170-017-0233-1
47.
Ma
,
Z.
,
Gao
,
L.
,
Zhong
,
Y.
,
Ma
,
S.
, and
An
,
B.
,
2020
, “
Arching Detection Method of Slab Track in High-Speed Railway Based on Track Geometry Data
,”
Appl. Sci.
,
10
(
19
), p.
6799
.10.3390/app10196799
48.
Qin
,
Z.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Xue
,
Y.
,
2020
, “
A GAN-Based Image Synthesis Method for Skin Lesion Classification
,”
Comput. Methods Programs Biomed.
,
195
, p.
105568
.10.1016/j.cmpb.2020.105568
49.
Li
,
X.
,
Zhang
,
W.
,
Ding
,
Q.
, and
Li
,
X.
,
2020
, “
Diagnosing Rotating Machines With Weakly Supervised Data Using Deep Transfer Learning
,”
IEEE Trans. Ind. Inf.
,
16
(
3
), pp.
1688
1697
.10.1109/TII.2019.2927590
50.
Nath
,
A. G.
,
Sharma
,
A.
,
Udmale
,
S. S.
, and
Singh
,
S. K.
,
2021
, “
An Early Classification Approach for Improving Structural Rotor Fault Diagnosis
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
13
.10.1109/TIM.2020.3043959
51.
Puruncajas
,
B.
,
Vidal
,
Y.
, and
Tutivén
,
C.
,
2020
, “
Vibration-Response-Only Structural Health Monitoring for Offshore Wind Turbine Jacket Foundations Via Convolutional Neural Networks
,”
Sensors (Switzerland)
,
20
(
12
), p.
3429
.10.3390/s20123429
52.
Zhao
,
C.
,
Shuai
,
R.
,
Ma
,
L.
,
Liu
,
W.
,
Di
,
H.
, and
Wu
,
M.
,
2021
, “
Dermoscopy Image Classification Based on StyleGAN and DenseNet201
,”
IEEE Access
,
9
, pp.
8659
8679
.10.1109/ACCESS.2021.3049600
53.
Yu
,
K.
,
Lin
,
T. R.
,
Ma
,
H.
,
Li
,
X.
, and
Li
,
X.
,
2021
, “
A Multi-Stage Semi-Supervised Learning Approach for Intelligent Fault Diagnosis of Rolling Bearing Using Data Augmentation and Metric Learning
,”
Mech. Syst. Signal Process.
,
146
, p.
107043
.10.1016/j.ymssp.2020.107043
54.
Yang
,
L.
,
Wang
,
L.
,
Yu
,
W.
, and
Shao
,
Y.
,
2021
, “
Investigation of Tooth Crack Opening State on Time Varying Meshing Stiffness and Dynamic Response of Spur Gear Pair
,”
Eng. Failure Anal.
,
121
, p.
105181
.10.1016/j.engfailanal.2020.105181
55.
Dixit
,
S.
, and
Verma
,
N. K.
,
2020
, “
Intelligent Condition-Based Monitoring of Rotary Machines With Few Samples
,”
IEEE Sens. J.
,
20
(
23
), pp.
14337
14346
.10.1109/JSEN.2020.3008177
56.
Fan
,
H.
,
Gao
,
S.
,
Zhang
,
X.
,
Cao
,
X.
,
Ma
,
H.
, and
Liu
,
Q.
,
2020
, “
Intelligent Recognition of Ferrographic Images Combining Optimal CNN With Transfer Learning Introducing Virtual Images
,”
IEEE Access
,
8
, pp.
137074
137093
.10.1109/ACCESS.2020.3011728
57.
Zhou
,
Z.
,
Wang
,
Y.
,
Guo
,
Y.
,
Qi
,
Y.
, and
Yu
,
J.
,
2020
, “
Image Quality Improvement of Hand-Held Ultrasound Devices With a Two-Stage Generative Adversarial Network
,”
IEEE Trans. Biomed. Eng.
,
67
(
1
), pp.
298
311
.10.1109/TBME.2019.2912986
58.
Reddy
,
A.
,
Indragandhi
,
V.
,
Ravi
,
L.
, and
Subramaniyaswamy
,
V.
,
2019
, “
Detection of Cracks and Damage in Wind Turbine Blades Using Artificial Intelligence-Based Image Analytics
,”
Meas.: J. Int. Meas. Confed.
,
147
, p.
106823
.10.1016/j.measurement.2019.07.051
59.
Lei
,
K.
,
Mardani
,
M.
,
Pauly
,
J. M.
, and
Vasanawala
,
S. S.
,
2021
, “
Wasserstein GANs for MR Imaging: From Paired to Unpaired Training
,”
IEEE Trans. Med. Imaging
,
40
(
1
), pp.
105
115
.10.1109/TMI.2020.3022968
60.
Li
,
X.
,
Zhang
,
W.
,
Ding
,
Q.
, and
Sun
,
J. Q.
,
2020
, “
Intelligent Rotating Machinery Fault Diagnosis Based on Deep Learning Using Data Augmentation
,”
J. Intell. Manuf.
,
31
(
2
), pp.
433
452
.10.1007/s10845-018-1456-1
61.
Zhang
,
Y.
,
Ren
,
Z.
, and
Zhou
,
S.
,
2020
, “
An Intelligent Fault Diagnosis for Rolling Bearing Based on Adversarial Semi-Supervised Method
,”
IEEE Access
,
8
, pp.
149868
149877
.10.1109/ACCESS.2020.3016314
62.
Wang
,
X.
,
Chu
,
Z.
,
Han
,
B.
,
Wang
,
J.
,
Zhang
,
G.
, and
Jiang
,
X.
,
2020
, “
A Novel Data Augmentation Method for Intelligent Fault Diagnosis Under Speed Fluctuation Condition
,”
IEEE Access
,
8
, pp.
143383
143396
.10.1109/ACCESS.2020.3014340
63.
Bao
,
W.
,
Miao
,
X.
,
Wang
,
H.
,
Yang
,
G.
, and
Zhang
,
H.
,
2020
, “
Remaining Useful Life Assessment of Slewing Bearing Based on Spatial-Temporal Sequence
,”
IEEE Access
,
8
, pp.
9739
9750
.10.1109/ACCESS.2020.2965285
64.
Liu
,
Q.
,
Ma
,
G.
, and
Cheng
,
C.
,
2020
, “
Data Fusion Generative Adversarial Network for Multi-Class Imbalanced Fault Diagnosis of Rotating Machinery
,”
IEEE Access
,
8
, pp.
70111
70124
.10.1109/ACCESS.2020.2986356
65.
Mao
,
W.
,
Liu
,
Y.
,
Ding
,
L.
, and
Li
,
Y.
,
2019
, “
Imbalanced Fault Diagnosis of Rolling Bearing Based on Generative Adversarial Network: A Comparative Study
,”
IEEE Access
,
7
, pp.
9515
9530
.10.1109/ACCESS.2018.2890693
66.
Wu
,
Z.
,
Lin
,
W.
, and
Ji
,
Y.
,
2018
, “
An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics
,”
IEEE Access
,
6
, pp.
8394
8402
.10.1109/ACCESS.2018.2807121
67.
Meng
,
Z.
,
Guo
,
X.
,
Pan
,
Z.
,
Sun
,
D.
, and
Liu
,
S.
,
2019
, “
Data Segmentation and Augmentation Methods Based on Raw Data Using Deep Neural Networks Approach for Rotating Machinery Fault Diagnosis
,”
IEEE Access
,
7
, pp.
79510
79522
.10.1109/ACCESS.2019.2923417
68.
Hu
,
T.
,
Tang
,
T.
,
Lin
,
R.
,
Chen
,
M.
,
Han
,
S.
, and
Wu
,
J.
,
2020
, “
A Simple Data Augmentation Algorithm and a Self-Adaptive Convolutional Architecture for Few-Shot Fault Diagnosis Under Different Working Conditions
,”
Meas.: J. Int. Meas. Confed.
,
156
, p.
107539
.10.1016/j.measurement.2020.107539
69.
Li
,
X.
,
Li
,
X.
, and
Ma
,
H.
,
2020
, “
Deep Representation Clustering-Based Fault Diagnosis Method With Unsupervised Data Applied to Rotating Machinery
,”
Mech. Syst. Signal Process.
,
143
, p.
106825
.10.1016/j.ymssp.2020.106825
70.
Renganathan
,
S. A.
,
Harada
,
K.
, and
Mavris
,
D. N.
,
2020
, “
Aerodynamic Data Fusion Toward the Digital Twin Paradigm
,”
AIAA J.
,
58
(
9
), pp.
3902
3918
.10.2514/1.J059203
71.
Xiaowei
,
J. I. A.
,
Willard
,
J.
,
Karpatne
,
A.
,
Read
,
J. S.
,
Zwart
,
J. A.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2020
, “
Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles
,”
ACM/IMS Trans. Data Sci.
,
2
(
3
), pp.
1
26
. URL: https://arxiv.org/abs/2001.11086
72.
Viana
,
F. A. C.
,
Nascimento
,
R. G.
,
Dourado
,
A.
, and
Yucesan
,
Y. A.
,
2021
, “
Estimating Model Inadequacy in Ordinary Differential Equations With Physics-Informed Neural Networks
,”
Comput. Struct.
,
245
, p.
106458
.10.1016/j.compstruc.2020.106458
73.
Yucesan
,
Y. A.
,
Viana
,
F. A. C.
,
Manin
,
L.
, and
Mahfoud
,
J.
,
2021
, “
Adjusting a Torsional Vibration Damper Model With Physics-Informed Neural Networks
,”
Mech. Syst. Signal Process.
,
154
, p.
107552
.10.1016/j.ymssp.2020.107552
74.
Chao
,
M. A.
,
Kulkarni
,
C.
,
Goebel
,
K.
, and
Fink
,
O.
,
2020
, “
Fusing Physics-Based and Deep Learning Models for Prognostics
,”
Reliab. Eng. Syst. Saf.
,
217
, p.
107961
.10.1016/j.ress.2021.107961
75.
Zhang
,
X.
, and
Garikipati
,
K.
,
2020
, “
Machine Learning Materials Physics: Multi-Resolution Neural Networks Learn the Free Energy and Nonlinear Elastic Response of Evolving Microstructures
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113362
.10.1016/j.cma.2020.113362
76.
Stulov
,
N.
,
Sobajic
,
D. J.
,
Maximov
,
Y.
,
Deka
,
D.
, and
Chertkov
,
M.
,
2020
, “
Learning Model of Generator From Terminal Data
,”
Electr. Power Syst. Res.
,
189
, p.
106742
.10.1016/j.epsr.2020.106742
77.
Li
,
P.
,
Jia
,
X.
,
Feng
,
J.
,
Zhu
,
F.
,
Miller
,
M.
,
Chen
,
L. Y.
, and
Lee
,
J.
,
2020
, “
A Novel Scalable Method for Machine Degradation Assessment Using Deep Convolutional Neural Network
,”
Meas.: J. Int. Meas. Confed.
,
151
, p.
107106
.10.1016/j.measurement.2019.107106
78.
Hsu
,
Y. C.
,
Yu
,
C. H.
, and
Buehler
,
M. J.
,
2020
, “
Using Deep Learning to Predict Fracture Patterns in Crystalline Solids
,”
Matter
,
3
(
1
), pp.
197
211
.10.1016/j.matt.2020.04.019
79.
Haupt
,
S. E.
,
Mccandless
,
T. C.
,
Dettling
,
S.
,
Alessandrini
,
S.
,
Lee
,
J. A.
,
Linden
,
S.
,
Petzke
,
W.
,
Brummet
,
T.
,
Nguyen
,
N.
, and
Kosović
,
B.
,
2020
, “
Combining Artificial Intelligence With Physics-Based Methods for Probabilistic Renewable Energy Forecasting
,”
Energies
,
13
(
8
), p.
1979
.10.3390/en13081979
80.
Wu
,
M.
,
Stefanakos
,
C.
, and
Gao
,
Z.
,
2020
, “
Multi-Step-Ahead Forecasting of Wave Conditions Based on a Physics-Based Machine Learning (PBML) Model for Marine Operations
,”
J. Mar. Sci. Eng.
,
8
(
12
), p.
992
.10.3390/jmse8120992
81.
Scher
,
S.
, and
Molinder
,
J.
,
2019
, “
Machine Learning-Based Prediction of Icing-Related Wind Power Production Loss
,”
IEEE Access
,
7
, pp.
129421
129429
.10.1109/ACCESS.2019.2939657
82.
Samin
,
A. J.
,
2020
, “
A Physics-Based Machine Learning Study of the Behavior of Interstitial Helium in Single Crystal W-Mo Binary Alloys
,”
J. Appl. Phys.
,
127
(
17
), p.
175904
.10.1063/1.5144891
83.
Liu
,
H.
,
Xu
,
Y.
,
Wang
,
J.
,
Jing
,
J.
,
Liu
,
C.
,
Wang
,
J. T. L.
, and
Wang
,
H.
,
2020
, “
Inferring Vector Magnetic Fields From Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
,”
Astrophys. J.
,
894
(
1
), p.
70
.10.3847/1538-4357/ab8818
84.
Liu
,
M.
,
Liang
,
L.
, and
Sun
,
W.
,
2020
, “
A Generic Physics-Informed Neural Network-Based Constitutive Model for Soft Biological Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113402
.10.1016/j.cma.2020.113402
85.
Chun
,
S.
,
Roy
,
S.
,
Nguyen
,
Y. T.
,
Choi
,
J. B.
,
Udaykumar
,
H. S.
, and
Baek
,
S. S.
,
2020
, “
Deep Learning for Synthetic Microstructure Generation in a Materials-by-Design Framework for Heterogeneous Energetic Materials
,”
Sci. Rep.
,
10
(
1
), p.
13307
.10.1038/s41598-020-70149-0
86.
Huang
,
Q.
,
Wang
,
Y.
,
Lyu
,
M.
, and
Lin
,
W.
,
2020
, “
Shape Deviation Generator—A Convolution Framework for Learning and Predicting 3-D Printing Shape Accuracy
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
3
), pp.
1486
1500
.10.1109/TASE.2019.2959211
87.
AIAA Digital Engineering Integration Committee
,
2021
, “
Digital Twin: Definition & Value
-
An AIAA and AIA Position Paper,” American Institute of Aeronautics and Astronautics, Reston, VA
.
88.
Grieves
,
M.
, and Vickers, J.,
2017
, “
Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
,”
Transdisciplinary Perspectives on Complex Systems
, F. J. Kahlen, S. Flumerfelt, and A. Alves, eds., Springer, Cham, Switzerland, pp. 85–113.10.1007/978-3-319-38756-7_4
89.
Lu
,
Q.
,
Parlikad
,
A. K.
,
Woodall
,
P.
,
Don Ranasinghe
,
G.
,
Xie
,
X.
,
Liang
,
Z.
,
Konstantinou
,
E.
,
Heaton
,
J.
, and
Schooling
,
J.
,
2020
, “
Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus
,”
J. Manage. Eng.
,
36
(
3
), p.
05020004
.10.1061/(ASCE)ME.1943-5479.0000763
90.
Kritzinger
,
W.
,
Karner
,
M.
,
Traar
,
G.
,
Henjes
,
J.
, and
Sihn
,
W.
,
2018
, “
Digital Twin in Manufacturing: A Categorical Literature Review and Classification
,”
IFAC-PapersOnLine
,
51
(
11
), pp.
1016
1022
.10.1016/j.ifacol.2018.08.474
91.
Luo
,
W.
,
Hu
,
T.
,
Ye
,
Y.
,
Zhang
,
C.
, and
Wei
,
Y.
,
2020
, “
A Hybrid Predictive Maintenance Approach for CNC Machine Tool Driven by Digital Twin
,”
Robot. Comput. Integr. Manuf.
,
65
, p.
101974
.10.1016/j.rcim.2020.101974
92.
Booyse
,
W.
,
Wilke
,
D. N.
, and
Heyns
,
S.
,
2020
, “
Deep Digital Twins for Detection, Diagnostics and Prognostics
,”
Mech. Syst. Signal Process.
,
140
, p.
106612
.10.1016/j.ymssp.2019.106612
93.
Xu
,
Y.
,
Sun
,
Y.
,
Liu
,
X.
, and
Zheng
,
Y.
,
2019
, “
A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning
,”
IEEE Access
,
7
, pp.
19990
19999
.10.1109/ACCESS.2018.2890566
94.
Tao
,
F.
,
Liu
,
W.
,
Zhang
,
M.
,
Hu
,
T.
,
Qi
,
Q.
,
Zhang
,
H.
,
Sui
,
F.
, et al.,
2019
, “
Five-Dimension Digital Twin Model and Its Ten Applications
,”
Jisuanji Jicheng Zhizao Xitong/Comput. Integr. Manuf. Syst., CIMS
,
25
(
1
), pp.
1
18
.10.13196/j.cims.2019.01.001
95.
Singh
,
S.
,
Shehab
,
E.
,
Higgins
,
N.
,
Fowler
,
K.
,
Reynolds
,
D.
, and
Erkoyuncu
,
J. A.
,
2019
, “
Towards Effective Data Management or Digital Twin
,” Volume 9:
Advances in Manufacturing Technology XXXIII
, Y. Jin, and M. Price, eds., IOS Press, Amsterdam, The Netherlands, pp.
167
172
.10.3233/ATDE190030
96.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
,
Huynh
,
D. B. P.
,
Tran
,
M.
, and
Willcox
,
K. E.
,
2020
, “
Data-Driven Physics-Based Digital Twins Via a Library of Component-Based Reduced-Order Models
,”
Int. J. Numer. Methods Eng.
.10.1002/nme.6423
97.
Liao
,
M.
,
Renaud
,
G.
, and
Bombardier
,
Y.
,
2020
, “
Airframe Digital Twin Technology Adaptability Assessment and Technology Demonstration
,”
Eng. Fract. Mech.
,
225
, p.
106793
.10.1016/j.engfracmech.2019.106793
98.
Leser
,
P. E.
,
Warner
,
J. E.
,
Leser
,
W. P.
,
Bomarito
,
G. F.
,
Newman
,
J. A.
, and
Hochhalter
,
J. D.
,
2020
, “
A Digital Twin Feasibility Study (Part II): Non-Deterministic Predictions of Fatigue Life Using In-Situ Diagnostics and Prognostics
,”
Eng. Fract. Mech.
,
229
, p.
106903
.10.1016/j.engfracmech.2020.106903
99.
Ye
,
Y.
,
Yang
,
Q.
,
Yang
,
F.
,
Huo
,
Y.
, and
Meng
,
S.
,
2020
, “
Digital Twin for the Structural Health Management of Reusable Spacecraft: A Case Study
,”
Eng. Fract. Mech.
,
234
(
3
), p.
107076
.10.1016/j.engfracmech.2020.107076
100.
Biehler
,
J.
,
Mäck
,
M.
,
Nitzler
,
J.
,
Hanss
,
M.
,
Koutsourelakis
,
P.-S.
, and
Wall
,
W. A.
,
2019
, “
Multifidelity Approaches for Uncertainty Quantification
,”
GAMM-Mitt.
,
42
(
2
), p.
e201900008
.10.1002/gamm.201900008
101.
Abdallah
,
I.
,
Lataniotis
,
C.
, and
Sudret
,
B.
,
2019
, “
Parametric Hierarchical Kriging for Multi-Fidelity Aero-Servo-Elastic Simulators—Application to Extreme Loads on Wind Turbines
,”
Probab. Eng. Mech.
,
55
, pp.
67
77
.10.1016/j.probengmech.2018.10.001
102.
Abdallah
,
I.
,
Tatsis
,
K.
, and
Chatzi
,
E.
,
2020
, “
Unsupervised Local Cluster-Weighted Bootstrap Aggregating the Output From Multiple Stochastic Simulators
,”
Reliab. Eng. Syst. Saf.
,
199
, p.
106876
.10.1016/j.ress.2020.106876
103.
VanDerHorn
,
E.
, and
Mahadevan
,
S.
,
2021
, “
Digital Twin: Generalization, Characterization and Implementation
,”
Decis. Support Syst.
,
145
, p.
113524
.10.1016/j.dss.2021.113524
104.
Yaqoob
,
I.
,
Salah
,
K.
,
Uddin
,
M.
,
Jayaraman
,
R.
,
Omar
,
M.
, and
Imran
,
M.
,
2020
, “
Blockchain for Digital Twins: Recent Advances and Future Research Challenges
,”
IEEE Network
,
34
(
5
), pp.
290
298
.10.1109/MNET.001.1900661
105.
Aivaliotis
,
P.
,
Georgoulias
,
K.
, and
Chryssolouris
,
G.
,
2019
, “
The Use of Digital Twin for Predictive Maintenance in Manufacturing
,”
Int. J. Comput. Integr. Manuf.
,
32
(
11
), pp.
1067
1080
.10.1080/0951192X.2019.1686173
106.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.10.1038/s42254-021-00314-5
107.
Lu
,
Y.
,
Liu
,
C.
,
Wang
,
K. I. K.
,
Huang
,
H.
, and
Xu
,
X.
,
2020
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101837
.10.1016/j.rcim.2019.101837
108.
Wang
,
J.
,
Ye
,
L.
,
Gao
,
R. X.
,
Li
,
C.
, and
Zhang
,
L.
,
2019
, “
Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3920
3934
.10.1080/00207543.2018.1552032
109.
Li
,
C.
,
Cabrera
,
D.
,
Sancho
,
F.
,
Sánchez
,
R. V.
,
Cerrada
,
M.
,
Long
,
J.
, and
Valente de Oliveira
,
J.
,
2021
, “
Fusing Convolutional Generative Adversarial Encoders for 3D Printer Fault Detection With Only Normal Condition Signals
,”
Mech. Syst. Signal Process.
,
147
, p.
107108
.10.1016/j.ymssp.2020.107108
110.
Famoso
,
F.
,
Brusca
,
S.
,
D'Urso
,
D.
,
Galvagno
,
A.
, and
Chiacchio
,
F.
,
2020
, “
A Novel Hybrid Model for the Estimation of Energy Conversion in a Wind Farm Combining Wake Effects and Stochastic Dependability
,”
Appl. Energy
,
280
, p.
115967
.10.1016/j.apenergy.2020.115967
111.
Yang
,
J.
,
Chang
,
B.
,
Wang
,
X.
,
Zhang
,
Q.
,
Wang
,
C.
,
Wang
,
F.
, and
Wu
,
M.
,
2020
, “
Design and Application of Deep Belief Network Based on Stochastic Adaptive Particle Swarm Optimization
,”
Math. Probl. Eng.
,
2020
, p.
6590765
.10.1155/2020/6590765
112.
Ding
,
P.
,
Jia
,
M.
, and
Wang
,
H.
,
2021
, “
A Dynamic Structure-Adaptive Symbolic Approach for Slewing Bearings' Life Prediction Under Variable Working Conditions
,”
Struct. Health Monit.
,
20
(
1
), pp.
273
302
.10.1177/1475921720929939
113.
Ozturk
,
S.
, and
Fthenakis
,
V.
,
2020
, “
Predicting Frequency, Time-to-Repair and Costs of Wind Turbine Failures
,”
Energies
,
13
(
5
), p.
1149
.10.3390/en13051149
114.
Memon
,
Z. A.
,
Trinchero
,
R.
,
Manfredi
,
P.
,
Canavero
,
F.
, and
Stievano
,
I. S.
,
2020
, “
Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks
,”
Energies
,
13
(
18
), p.
4881
.10.3390/en13184881
115.
Xu
,
M.
,
Baraldi
,
P.
,
Al-Dahidi
,
S.
, and
Zio
,
E.
,
2020
, “
Fault Prognostics by an Ensemble of Echo State Networks in Presence of Event Based Measurements
,”
Eng. Appl. Artif. Intell.
,
87
, p.
103346
.10.1016/j.engappai.2019.103346
116.
Wang
,
X. B.
,
Miao
,
P.
,
Zhang
,
K.
,
Zhang
,
X.
, and
Wang
,
J.
,
2019
, “
Study on Novel Signal Processing and Simultaneous-Fault Diagnostic Method for Wind Turbine
,”
Trans. Inst. Meas. Control
,
41
(
14
), pp.
4100
4113
.10.1177/0142331219849261
117.
Wang
,
Y.
,
Liu
,
F.
, and
Zhu
,
A.
,
2019
, “
Bearing Fault Diagnosis Based on a Hybrid Classifier Ensemble Approach and the Improved Dempster-Shafer Theory
,”
Sensors
,
19
(
9
), p.
2097
.10.3390/s19092097
118.
Qi
,
Y.
,
Bai
,
Y.
,
Gao
,
S.
, and
Li
,
Y.
,
2019
, “
Fault Diagnosis of Wind Turbine Bearing Based on AVMD and Spectral Correlation Analysis
,”
Taiyangneng Xuebao/Acta Energ. Sol. Sin.
,
40
(
7
), pp.
2053
2063
.http://jvs.sjtu.edu.cn/CN/
119.
Pandit
,
R. K.
,
Infield
,
D.
, and
Carroll
,
J.
,
2019
, “
Incorporating Air Density Into a Gaussian Process Wind Turbine Power Curve Model for Improving Fitting Accuracy
,”
Wind Energy
,
22
(
2
), pp.
302
315
.10.1002/we.2285
120.
Zhong
,
J. H.
,
Zhang
,
J.
,
Liang
,
J.
, and
Wang
,
H.
,
2019
, “
Multi-Fault Rapid Diagnosis for Wind Turbine Gearbox Using Sparse Bayesian Extreme Learning Machine
,”
IEEE Access
,
7
(
1
), pp.
773
781
.10.1109/ACCESS.2018.2885816
121.
Xiao
,
Y.
,
Wang
,
Y.
, and
Ding
,
Z.
,
2018
, “
The Application of Heterogeneous Information Fusion in Misalignment Fault Diagnosis of Wind Turbines
,”
Energies
,
11
(
7
), p.
1655
.10.3390/en11071655
122.
Perry
,
M.
,
Fusiek
,
G.
,
Niewczas
,
P.
,
Rubert
,
T.
, and
McAlorum
,
J.
,
2017
, “
Wireless Concrete Strength Monitoring of Wind Turbine Foundations
,”
Sensors (Switzerland)
,
17
(
12
), p.
2928
.10.3390/s17122928
123.
Amare
,
F. D.
,
Gilani
,
S. I.
,
Aklilu
,
B. T.
, and
Mojahid
,
A.
,
2017
, “
Two-Shaft Stationary Gas Turbine Engine Gas Path Diagnostics Using Fuzzy Logic
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5593
5602
.10.1007/s12206-017-1053-9
124.
Wang
,
J. J.
,
Zheng
,
Y. H.
,
Zhang
,
L. B.
,
Duan
,
L. X.
, and
Zhao
,
R.
,
2017
, “
Virtual Sensing for Gearbox Condition Monitoring Based on Kernel Factor Analysis
,”
Pet. Sci.
,
14
(
3
), pp.
539
548
.10.1007/s12182-017-0163-4
125.
Liu
,
J.
,
Hu
,
Y.
,
Wu
,
B.
,
Wang
,
Y.
, and
Xie
,
F.
,
2017
, “
A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings
,”
Sensors (Basel)
,
17
(
5
), p.
1143
.10.3390/s17051143
126.
Liu
,
S.
,
Hu
,
Y.
,
Li
,
C.
,
Lu
,
H.
, and
Zhang
,
H.
,
2017
, “
Machinery Condition Prediction Based on Wavelet and Support Vector Machine
,”
J. Intell. Manuf.
,
28
(
4
), pp.
1045
1055
.10.1007/s10845-015-1045-5
127.
Augustine
,
P.
,
2020
, “
The Industry Use Cases for the Digital Twin Idea
,”
Volume 117: Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases
, P. Raj, and P. Evangeline, Academic Press, San Diego, CA, pp. 79-105.10.1016/bs.adcom.2019.10.008
128.
Chakraborty
,
S.
,
Adhikari
,
S.
, and
Ganguli
,
R.
,
2021
, “
The Role of Surrogate Models in the Development of Digital Twins of Dynamic Systems
,”
Appl. Math. Modell.
,
90
, pp.
662
681
.10.1016/j.apm.2020.09.037
129.
Coraddu
,
A.
,
Oneto
,
L.
,
Baldi
,
F.
,
Cipollini
,
F.
,
Atlar
,
M.
, and
Savio
,
S.
,
2019
, “
Data-Driven Ship Digital Twin for Estimating the Speed Loss Caused by the Marine Fouling
,”
Ocean Eng.
,
186
, p.
106063
.10.1016/j.oceaneng.2019.05.045
130.
Erkoyuncu
,
J. A.
,
del Amo
,
I. F.
,
Ariansyah
,
D.
,
Bulka
,
D.
,
Vrabič
,
R.
, and
Roy
,
R.
,
2020
, “
A Design Framework for Adaptive Digital Twins
,”
CIRP Ann.
,
69
(
1
), pp.
145
148
.10.1016/j.cirp.2020.04.086
131.
Ghanem
,
R.
,
Soize
,
C.
,
Mehrez
,
L.
, and
Aitharaju
,
V.
,
2020
, “
Probabilistic Learning and Updating of a Digital Twin for Composite Material Systems
,”
Int. J. Numer. Methods Eng.
132.
Li
,
Q. W.
,
Li
,
Q. W.
,
Jiang
,
P.
,
Jiang
,
P.
,
Li
,
H.
, and
Li
,
H.
,
2020
, “
Prognostics and Health Management of FAST Cable-Net Structure Based on Digital Twin Technology
,”
Res. Astron. Astrophys.
,
20
(
5
), p.
067
.10.1088/1674-4527/20/5/67
133.
Liu
,
Z.
,
Chen
,
W.
,
Zhang
,
C.
,
Yang
,
C.
, and
Chu
,
H.
,
2019
, “
Data Super-Network Fault Prediction Model and Maintenance Strategy for Mechanical Product Based on Digital Twin
,”
IEEE Access
,
7
, pp.
177284
177296
.10.1109/ACCESS.2019.2957202
134.
Milton
,
M.
,
De La
,
C. O.
,
Ginn
,
H. L.
, and
Benigni
,
A.
,
2020
, “
Controller-Embeddable Probabilistic Real-Time Digital Twins for Power Electronic Converter Diagnostics
,”
IEEE Trans. Power Electron.
,
35
(
9
), pp.
9850
9864
.10.1109/TPEL.2020.2971775
135.
Moi
,
T.
,
Cibicik
,
A.
, and
Rølvåg
,
T.
,
2020
, “
Digital Twin Based Condition Monitoring of a Knuckle Boom Crane: An Experimental Study
,”
Eng. Failure Anal.
,
112
, p.
104517
.10.1016/j.engfailanal.2020.104517
136.
Negri
,
E.
,
Pandhare
,
V.
,
Cattaneo
,
L.
,
Singh
,
J.
,
Macchi
,
M.
, and
Lee
,
J.
,
2020
, “
Field-Synchronized Digital Twin Framework for Production Scheduling With Uncertainty
,”
J. Intell. Manuf.
,
32
, pp.
1207
1228
.10.1007/s10845-020-01685-9
137.
Shangguan
,
D.
,
Chen
,
L.
, and
Ding
,
J.
,
2020
, “
A Digital Twin-Based Approach for the Fault Diagnosis and Health Monitoring of a Complex Satellite System
,”
Symmetry (Basel)
,
12
(
8
), p.
1307
.10.3390/sym12081307
138.
Wang
,
P.
,
Yang
,
M.
,
Peng
,
Y.
,
Zhu
,
J.
,
Ju
,
R.
, and
Yin
,
Q.
,
2019
, “
Sensor Control in Anti-Submarine Warfare—A Digital Twin and Random Finite Sets Based Approach
,”
Entropy
,
21
(
8
), p.
767
.10.3390/e21080767
139.
Wang
,
Q.
,
Jiao
,
W.
, and
Zhang
,
Y. M.
,
2020
, “
Deep Learning-Empowered Digital Twin for Visualized Weld Joint Growth Monitoring and Penetration Control
,”
J. Manuf. Syst.
,
57
, pp.
429
439
.10.1016/j.jmsy.2020.10.002
140.
Yeratapally
,
S. R.
,
Leser
,
P. E.
,
Hochhalter
,
J. D.
,
Leser
,
W. P.
, and
Ruggles
,
T. J.
,
2020
, “
A Digital Twin Feasibility Study (Part I): Non-Deterministic Predictions of Fatigue Life in Aluminum Alloy 7075-T651 Using a Microstructure-Based Multi-Scale Model
,”
Eng. Fract. Mech.
,
228
, p.
106888
.10.1016/j.engfracmech.2020.106888
141.
Zheng
,
Y.
,
Wang
,
S.
,
Li
,
Q.
, and
Li
,
B.
,
2020
, “
Fringe Projection Profilometry by Conducting Deep Learning From Its Digital Twin
,”
Opt. Express
,
28
(
24
), pp.
36568
36583
.10.1364/OE.410428
142.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann. - Manuf.
,
66
(
1
), pp.
141
144
.10.1016/j.cirp.2017.04.040
143.
Vijayakumar
,
D. S.
,
2020
, “
Digital Twin in Consumer Choice Modeling
,”
Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases
,
P.
Raj
and
P.
Evangeline
, eds.,
Academic Press
,
San Diego, CA
, pp.
265
284
.
144.
Kim
,
J.
, and
Kim
,
S. A.
,
2020
, “
Lifespan Prediction Technique for Digital Twin-Based Noise Barrier Tunnels
,”
Sustainability
,
12
(
7
), p.
2940
.10.3390/su12072940
145.
Susila
,
N.
,
Sruthi
,
A.
, and
Usha
,
S.
,
2020
, “
Impact of Cloud Security in Digital Twin
,”
Adv. Comput.
,
117
(
1
), pp.
247
263
.10.1016/bs.adcom.2019.09.005
You do not currently have access to this content.