Abstract

Many fault detection, optimization, and control logic methods rely on sensor feedback that assumes the system is operating at steady-state conditions, despite persistent transient disturbances. While filtering and signal processing techniques can eliminate some transient effects, this paper proposes an equilibrium prediction method for first-order dynamic systems using an exponential regression. This method is particularly valuable for many commercial and industrial energy system, whose dynamics are dominated by first-order thermo-fluid effects. To illustrate the basic advantages of the proposed approach, Monte Carlo simulations are used. This is followed by three distinct experimental case studies to demonstrate the practical efficacy of the proposed method. First, the ability to predict the carbon dioxide level in classrooms allows for energy efficient control of the ventilation system and ensures occupant comfort. Second, predicting the optimal time to end the cool-down of an industrial sintering furnace allows for maximum part throughput and worker safety. Finally, fault detection and diagnosis (FDD) methods for air conditioning systems typically use static system models; however, the transient response of many air conditioning signals may be approximated as first-order, and therefore, the prediction model enables the use of static fault detection methods with transient data (a need that has not been addressed in over 20 years of air conditioning FDD research). In this paper, the equilibrium prediction method's performance will be quantified using both Monte Carlo simulations and case studies.

References

1.
EIA
,
2012
, “
Annual Energy Review 2011
,”
Government Printing Office
, Washington, DC.
2.
Rogers
,
A.
,
Guo
,
F.
, and
Rasmussen
,
B.
,
2019
, “
A Review of Fault Detection and Diagnosis Methods for Residential Air Conditioning Systems
,”
Build. Environ.
,
161
, p.
106236
.10.1016/j.buildenv.2019.106236
3.
Katipamula
,
S.
, and
Brambley
,
M. R.
,
2005
, “
Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I
,”
HVACR Res.
,
11
(
1
), pp.
3
25
.10.1080/10789669.2005.10391123
4.
Katipamula
,
S.
, and
Brambley
,
M. R.
,
2005
, “
Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review—Part II
,”
HVACR Res.
,
11
(
2
), pp.
169
187
.10.1080/10789669.2005.10391133
5.
Kim
,
W.
, and
Katipamula
,
S.
,
2018
, “
A Review of Fault Detection and Diagnostics Methods for Building Systems
,”
Sci. Technol. Built Environ.
,
24
(
1
), pp.
3
21
.10.1080/23744731.2017.1318008
6.
Fernandez
,
N.
,
Katipamula
,
S.
,
Wang
,
W.
,
Xie
,
Y.
,
Zhao
,
M.
, and
Corbin
,
C.
,
2017
, “Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction,”
Pacific Northwest National Laboratory
, Richland, WA, Report No.
PNNL-25985
.https://buildingretuning.pnnl.gov/publications/PNNL-25985.pdf
7.
Wang
,
W.
,
Katipamula
,
S.
,
Ngo
,
H.
,
Underhill
,
R.
,
Taasevigen
,
D.
, and
Lutes
,
R.
,
2013
, “
Advanced Rooftop Control (ARC) Retrofit: Field-Test Results
,” Pacific Northwest National Laboratory, Richland, WA, Report No.
PNNL-22656
. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-22656.pdf
8.
Armstrong
,
P. R.
,
Laughman
,
C. R.
,
Leeb
,
S. B.
, and
Norford
,
L. K.
,
2006
, “
Detection of Rooftop Cooling Unit Faults Based on Electrical Measurements
,”
HVACR Res.
,
12
(
1
), pp.
151
175
.10.1080/10789669.2006.10391172
9.
Keir
,
M. C.
, and
Alleyne
,
A. G.
,
2006
, “
Dynamic Modeling, Control, and Fault Detection in Vapor Compression Systems
,” Master's thesis,
University of Illinois at Urbana-Champaign
, Champaign, IL.
10.
Braun
,
J. E.
,
2003
, “
Automated Fault Detection and Diagnostics for Vapor Compression Cooling Equipment
,”
ASME J. Sol. Energy Eng.
,
125
(
3
), pp.
266
274
.10.1115/1.1591001
11.
Glass
,
A. S.
,
Gruber
,
P.
,
Roos
,
M.
, and
Todtli
,
J.
,
1995
, “
Qualitative Model-Based Fault Detection in Air-Handling Units
,”
IEEE Control Syst.
,
15
(
4
), pp.
11
22
.10.1109/37.408465
12.
Breuker
,
M. S.
, and
Braun
,
J. E.
,
1998
, “
Evaluating the Performance of a Fault Detection and Diagnostic System for Vapor Compression Equipment
,”
HVACR Res.
,
4
(
4
), pp.
401
425
.10.1080/10789669.1998.10391412
13.
Chen
,
B.
, and
Braun
,
J. E.
,
2001
, “
Simple Rule-Based Methods for Fault Detection and Diagnostics Applied to Packaged Air Conditioners
,”
ASHRAE Trans.
,
107
(
1
), pp.
847
857
.https://www.techstreet.com/standards/at-01-14-2-simple-rule-based-methods-for-fault-detection-and-diagnostics-applied-to-packaged-air-conditioners?product_id=1719320#jumps
14.
Kim
,
M.
,
Yoon
,
S. H.
,
Domanski
,
P. A.
, and
Payne
,
W. V.
,
2008
, “
Design of a Steady-State Detector for Fault Detection and Diagnosis of a Residential Air Conditioner
,”
Int. J. Refrig.
,
31
(
5
), pp.
790
799
.10.1016/j.ijrefrig.2007.11.008
15.
Li
,
H.
, and
Braun
,
J. E.
,
2003
, “
An Improved Method for Fault Detection and Diagnosis Applied to Packaged Air Conditioners
,”
ASHRAE Trans.
,
109
, pp.
683
692
.https://www.techstreet.com/standards/kc-03-08-2-an-improved-method-for-fault-detection-and-diagnosis-applied-to-packaged-air-conditioners?product_id=1717612
16.
Choi
,
K.
,
Namburu
,
S. M.
,
Azam
,
M. S.
,
Luo
,
J.
,
Pattipati
,
K. R.
, and
Patterson-Hine
,
A.
,
2005
, “
Fault Diagnosis in HVAC Chillers
,”
IEEE Instrum. Meas. Mag.
,
8
(
3
), pp.
24
32
.10.1109/MIM.2005.1502443
17.
Jacquelin
,
J.
,
2009
, “
Regressions et Equations Integrales
,” Scribd, San Francisco, CA, Accessed Aug. 8, 2019, https://www.scribd.com/doc/14674814/Regressions-et-equations-integrales
18.
Rogers
,
A.
,
Guo
,
F.
, and
Rasmussen
,
B.
, “
Applying Static Fault Detection and Diagnosis Methods to Transient Air Conditioning Data Using an Equilibrium Prediction
,”
ASME
Paper No. IMECE2019-11579.10.1115/IMECE2019-11579
19.
Coley
,
D. A.
,
Greeves
,
R.
, and
Saxby
,
B. K.
,
2007
, “
The Effect of Low Ventilation Rates on the Cognitive Function of a Primary School Class
,”
Int. J. Vent.
,
6
(
2
), pp.
107
112
.10.1080/14733315.2007.11683770
20.
Bakó-Biró
,
Z.
,
Clements-Croome
,
D. J.
,
Kochhar
,
N.
,
Awbi
,
H. B.
, and
Williams
,
M. J.
,
2012
, “
Ventilation Rates in Schools and Pupils Performance
,”
Build. Environ.
,
48
, pp.
215
223
.10.1016/j.buildenv.2011.08.018
21.
ASHRAE
,
2016
, “
Ventilation for Acceptable Indoor Air Quality
,” American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA, Standard No. 62.1-2016.
22.
Coley
,
D. A.
, and
Beisteiner
,
A.
,
2002
, “
Carbon Dioxide Levels and Ventilation Rates in Schools
,”
Int. J. Vent.
,
1
(
1
), pp.
45
52
.10.1080/14733315.2002.11683621
23.
Despatch Industries
,
2015
, “Engineer's Guide to Effective Heat Processing,”
Despatch Industries
, Minneapolis, MN.
24.
Rogers
,
A. P.
, and
Rasmussen
,
B. P.
,
2018
, “
Optimization of the Cool-Down Process for a System of Sintering Furnaces
,”
Smart and Sustainable Manufacturing Systems
, 2(1), pp.
64
86
.10.1520/SSMS20170015
You do not currently have access to this content.