Abstract

Predictive maintenance, as a form of pro-active maintenance, has increasing usage and shows significant superiority over the corrective and preventive maintenance. However, conventional methods of predictive maintenance have noteworthy limitations in maintenance optimization and reliability improvement. In the last two decades, machine learning has flourished and overcome many inherent flaws of conventional maintenance prediction methods. Meanwhile, machine learning displays unprecedented predictive power in maintenance prediction and optimization. This paper compares the features of corrective, preventive, and predictive maintenance, examines the conventional approaches to predictive maintenance, and analyzes their drawbacks. Subsequently, this paper explores the driving forces, and advantages of machine learning over conventional solutions in predictive maintenance. Specifically, this paper reviews popular supervised learning and reinforcement learning algorithms and the associated typical applications in predictive maintenance. Furthermore, this paper summarizes the four critical steps of machine learning applications in maintenance prediction. Finally, the author proposes the future researches concerning how to utilize machine learning to optimize maintenance prediction and planning, improve equipment reliability, and achieve the best possible benefit.

References

1.
Benbow
,
D. W.
, and
Broome
,
H. W.
,
2012
,
The Certified Reliability Engineer Handbook
,
ASQ Quality Press
, Wilwaukee, WI.
2.
Ren
,
Y.
,
Wang
,
N.
,
Jiang
,
J.
,
Zhu
,
J.
,
Song
,
G.
, and
Chen
,
X.
,
2019
, “
The Application of Downhole Vibration Factor in Drilling Tool Reliability Big Data Analytics—A Review
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
5
(
1
), p.
010801
.10.1115/1.4040407
3.
Fan
,
Q.
, and
Fan
,
H.
,
2015
, “
Reliability Analysis and Failure Prediction of Construction Equipment With Time Series Models
,”
J. Adv. Manage. Sci.
,
3
(
3
), pp.
203
210
.10.12720/joams.3.3.203-210
4.
Trappey
,
A. J.
,
Trappey
,
C. V.
,
Ma
,
L.
, and
Chang
,
J. C.
,
2015
, “
Intelligent Engineering Asset Management System for Power Transformer Maintenance Decision Supports Under Various Operating Conditions
,”
Comput. Ind. Eng.
,
84
, pp.
3
11
.10.1016/j.cie.2014.12.033
5.
Coleman
,
C.
,
Damodaran
,
S.
,
Chandramouli
,
M.
, and
Deuel
,
E.
,
2017
,
Making Maintenance Smarter: Predictive Maintenance and the Digital Supply Network
,
Deloitte Insights
, Westlake, TX.
6.
Haarman
,
M.
,
Mulders
,
M.
, and
CVassiliadis
,
C.
,
2017
, “
Predictive Maintenance 4.0-Predict the Unpredictable
,” PwC and Mainnovation, PwC Amsterdam, The Netherlands and Mainnovation Dordrecht, The Netherlands.
7.
Wu
,
S. J.
,
Gebraeel
,
N.
,
Lawley
,
M. A.
, and
Yih
,
Y.
,
2007
, “
A Neural Network Integrated Decision Support System for Condition-Based Optimal Predictive Maintenance Policy
,”
IEEE Trans. Syst., Man, Cybern. Part A
,
37
(
2
), pp.
226
236
.10.1109/TSMCA.2006.886368
8.
Bousdekis
,
A.
,
Magoutas
,
B.
,
Apostolou
,
D.
, and
Mentzas
,
G.
,
2018
, “
Review, Analysis and Synthesis of Prognostic-Based Decision Support Methods for Condition Based Maintenance
,”
J. Intell. Manuf.
,
29
(
6
), pp.
1303
1016
.10.1007/s10845-015-1179-5
9.
Shin
,
J. H.
, and
Jun
,
H. B.
,
2015
, “
On Condition Based Maintenance Policy
,”
J. Comput. Des. Eng.
,
2
(
2
), pp.
119
127
.10.1016/j.jcde.2014.12.006
10.
Javed
,
K.
,
2014
, “
A Robust & Reliable Data-Driven Prognostics Approach Based on Extreme Learning Machine and Fuzzy Clustering
,” Doctoral dissertation, Université de Franche-Comté, Besançon, Franche-Comté, France.
11.
Ahmad
,
R.
, and
Kamaruddin
,
S.
,
2012
, “
An Overview of Time-Based and Condition-Based Maintenance in Industrial Application
,”
Comput. Ind. Eng.
,
63
(
1
), pp.
135
149
.10.1016/j.cie.2012.02.002
12.
Niu
,
G.
,
Yang
,
B. S.
, and
Pecht
,
M.
,
2010
, “
Development of an Optimized Condition-Based Maintenance System by Data Fusion and Reliability-Centered Maintenance
,”
Reliab. Eng. Syst. Saf.
,
95
(
7
), pp.
786
796
.10.1016/j.ress.2010.02.016
13.
Rausand
,
M.
, and
Vatn
,
J.
,
2008
, “
Reliability Centred Maintenance
,”
InComplex System Maintenance Handbook
,
Springer
,
London
, pp.
79
108
.
14.
Kale
,
A. A.
,
Zhang
,
D.
,
David
,
A.
,
Heuermann-Kuehn
,
L.
, and
Fanini
,
O.
,
2015
, “
Methodology for Optimizing Operational Performance and Life Management of Drilling Systems Using Real Time-Data and Predictive Analytics
,”
SPE Digital Energy Conference and Exhibition
, The Woodlands, TX, Mar. 3.https://doi.org/SPE-173419-MS
15.
Jahnke
,
P.
,
2015
, “
Machine Learning Approaches for Failure Type Detection and Predictive Maintenance
,” Master thesis, Technische Universität Darmstadt, Darmstadt, Germany.
16.
Carter-Journet
,
K.
,
Kale
,
A. A.
,
Falgout
,
T.
, and
Heuermann-Kuehn
,
L.
,
2014
, “
Drilling Optimization: Utilizing Lifetime Prediction to Improve Drilling Performance and Reduce Downtime
,”
SPE Deepwater Drilling and Completions Conference
, Galveston, TX, Sep.
10
.10.2118/170270-MS
17.
Meeker
,
W. Q.
, and
Hong
,
Y.
,
2014
, “
Reliability Meets Big Data: Opportunities and Challenges
,”
Qual. Eng.
,
26
(
1
), pp.
102
116
.10.1080/08982112.2014.846119
18.
Smoczek
,
J.
,
2012
, “
The Survey of Soft Computing Techniques for Reliability Prediction
,”
J. KONES
,
19
(
3
), pp.
407
414
.
19.
Kohli
,
M.
,
2018
, “
Predicting Equipment Failure on SAP ERP Application Using Machine Learning Algorithms
,”
Int. J. Eng. Technol.
,
7
(
2.28
), p.
306
.10.14419/ijet.v7i2.28.12951
20.
Gu
,
J.
,
Vichare
,
N.
,
Ayyub
,
B.
, and
Pecht
,
M.
,
2010
, “
Application of Grey Prediction Model for Failure Prognostics of Electronics
,”
Int. J. Performability Eng.
,
6
(
5
), pp.
435
442
.10.23940/ijpe.10.5.p435.mag
21.
Irwin
,
R.
,
2017
, “
Machine Learning to Revolutionize Industrial Maintenance With Advanced Analytics
,” A Bentley White Paper, Exton, PA, accessed Sep. 2017, www.bentley.com
22.
Munirathinam
,
S.
, and
Ramadoss
,
B.
,
2016
, “
Predictive Models for Equipment Fault Detection in the Semiconductor Manufacturing Process
,”
IACSIT Int. J. Eng. Technol.
,
8
(
4
), pp.
273
285
.10.7763/IJET.2016.V8.898
23.
Sipos
,
R.
,
Fradkin
,
D.
,
Moerchen
,
F.
, and
Wang
,
Z.
,
2014
, “
Log-Based Predictive Maintenance
,”
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, New York, Aug. 24, pp. 1867–1876.
24.
Pourmostafaei
,
M.
,
Pourgol-Mohammad
,
M.
,
Yazdani
,
M.
, and
Salimi
,
H.
,
2020
, “
Physics of Failure-Based Reliability Assessment for Systems Exposed to Sliding Wear Under Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B
,
6
(
2
), p. 021010.10.1115/1.4045555
25.
Rezakhani
,
P.
, and
Maghiar
,
M.
,
2019
, “
Fuzzy Analytical Solution for Activity Duration Estimation Under Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A
,
5
(
4
), p.
04019014
.10.1061/AJRUA6.0001020
26.
Smoczek
,
J.
, and
Szpytko
,
J.
,
2011
, “
A Genetic Fuzzy Approach to Estimate Operation Time of Transport Device
,”
J. KONES
,
18
(
4
), pp.
601
608
.
27.
Kale
,
A. A.
,
Carter-Journet
,
K.
,
Falgout
,
T. A.
,
Heuermann-Kuehn
,
L.
, and
Zurcher
,
D.
,
2014
, “
A Probabilistic Approach for Reliability and Life Prediction of Electronics in Drilling and Evaluation Tools
,”
Annual Conference of the Prognostic and Health Management Society
, Fort Worth, TX, Sep., 27. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.658.3812&rep=rep1&type=pdf
28.
Abu-Samah
,
A.
,
Shahzad
,
M. K.
,
Zamai
,
E.
, and
Said
,
A. B.
,
2015
, “
Failure Prediction Methodology for Improved Proactive Maintenance Using Bayesian Approach
,”
IFAC-PapersOnLine
,
48
(
21
), pp.
844
851
.10.1016/j.ifacol.2015.09.632
29.
Amin
,
M. T.
,
Khan
,
F.
, and
Imtiaz
,
S.
,
2019
, “
Fault Detection and Pathway Analysis Using a Dynamic Bayesian Network
,”
Chem. Eng. Sci.
,
195
, pp.
777
790
.10.1016/j.ces.2018.10.024
30.
Patil
,
S.
,
Patil
,
A.
,
Handikherkar
,
V.
,
Desai
,
S.
,
Phalle
,
V. M.
, and
Kazi
,
F. S.
,
2018
, “
Remaining Useful Life (RUL) Prediction of Rolling Element Bearing Using Random Forest and Gradient Boosting Technique
,”
ASME
Paper No. IMECE2018-87623.10.1115/IMECE2018-87623
31.
Pedrosa
,
B.
,
Correia
,
J. A.
,
Rebelo
,
C. A.
, and
Veljkovic
,
M.
,
2020
, “
Reliability of Fatigue Strength Curves for Riveted Connections Using Normal and Weibull Distribution Functions
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
6
(
3
), p.
04020034
.10.1061/AJRUA6.0001081
32.
Koutsellis
,
T.
, and
Mourelatos
,
Z. P.
,
2020
, “
Parameter Estimation of Limited Failure Population Model With a Weibull Underlying Distribution
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B
,
6
(
2
), p. 021007.10.1115/1.4044715
33.
Miller
,
R. G.
, Jr.
,
2011
,
Survival Analysis
, Vol.
66
,
Wiley, Hoboken, NJ
.
34.
Heng
,
A.
,
Tan
,
A. C.
,
Mathew
,
J.
,
Montgomery
,
N.
,
Banjevic
,
D.
, and
Jardine
,
A. K.
,
2009
, “
Intelligent Condition-Based Prediction of Machinery Reliability
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1600
1614
.10.1016/j.ymssp.2008.12.006
35.
Tran
,
V. T.
,
Thom Pham
,
H.
,
Yang
,
B.-S.
, and
Tien Nguyen
,
T.
,
2012
, “
Machine Performance Degradation Assessment and Remaining Useful Life Prediction Using Proportional Hazard Model and Support Vector Machine
,”
Mech. Syst. Signal Process.
,
32
, pp.
320
330
.10.1016/j.ymssp.2012.02.015
36.
Sun
,
Y.
,
Ma
,
L.
,
Mathew
,
J.
,
Wang
,
W.
, and
Zhang
,
S.
,
2006
, “
Mechanical Systems Hazard Estimation Using Condition Monitoring
,”
Mech. Systems Signal Process.
,
20
(
5
), pp.
1189
1201
.10.1016/j.ymssp.2004.10.009
37.
Sapankevych
,
N. I.
, and
Sankar
,
R.
,
2009
, “
Time Series Prediction Using Support Vector Machines: A Survey
,”
IEEE Comput. Intell. Mag.
,
4
(
2
), pp.
24
38
.10.1109/MCI.2009.932254
38.
Shumway
,
R. H.
, and
Stoffer
,
D. S.
,
2017
,
Time Series Analysis and Its Applications: With R Examples
,
Springer
, New York.
39.
Orhan
,
S.
,
Aktürk
,
N.
, and
Celik
,
V.
,
2006
, “
Vibration Monitoring for Defect Diagnosis of Rolling Element Bearings as a Predictive Maintenance Tool: Comprehensive Case Studies
,”
Ndt E Int.
,
39
(
4
), pp.
293
298
.10.1016/j.ndteint.2005.08.008
40.
Draper
,
N. R.
, and
Smith
,
H.
,
1998
,
Applied Regression Analysis
, Vol.
326
,
Wiley
, Hoboken, NJ.
41.
Wang
,
T.
,
Yu
,
J.
,
Siegel
,
D.
, and
Lee
,
J.
,
2008
, “
A Similarity-Based Prognostics Approach for Remaining Useful Life Estimation of Engineered Systems
,”
International Conference on Prognostics and Health Management
, Denver, CO, Oct. 6–9, pp.
1
6
.10.1109/PHM.2008.4711421
42.
Rosenvinge
,
J.
,
2013
, “
Lifetime Analysis of Automotive Batteries Using Random Forests and Cox Regression
,” Master thesis, Kungliga Tekniska högskolan, Stockholm, Sweden.
43.
das Chagas Moura
,
M.
,
Zio
,
E.
,
Lins
,
I. D.
, and
Droguett
,
E.
,
2011
, “
Failure and Reliability Prediction by Support Vector Machines Regression of Time Series Data
,”
Reliab. Eng. Syst. Saf.
,
96
(
11
), pp.
1527
1534
.10.1016/j.ress.2011.06.006
44.
Liao
,
W.
,
Wang
,
Y.
, and
Pan
,
E.
,
2012
, “
Single-Machine-Based Predictive Maintenance Model Considering Intelligent Machinery Prognostics
,”
Int. J. Adv. Manuf. Technol.
,
63
(
1–4
), pp.
51
63
.10.1007/s00170-011-3884-3
45.
Hong
,
W. C.
, and
Pai
,
P. F.
,
2006
, “
Predicting Engine Reliability by Support Vector Machines
,”
Int. J. Adv. Manuf. Technol.
,
28
(
1–2
), pp.
154
161
.10.1007/s00170-004-2340-z
46.
Pham
,
H. T.
, and
Yang
,
B. S.
,
2010
, “
Estimation and Forecasting of Machine Health Condition Using ARMA/GARCH Model
,”
Mech. Syst. Signal Process.
,
24
(
2
), pp.
546
558
.10.1016/j.ymssp.2009.08.004
47.
Don
,
M. G.
, and
Khan
,
F.
,
2019
, “
Dynamic Process Fault Detection and Diagnosis Based on a Combined Approach of Hidden Markov and Bayesian Network Model
,”
Chem. Eng. Sci.
,
201
, pp.
82
96
.10.1016/j.ces.2019.01.060
48.
Xayyasith
,
S.
,
Promwungkwa
,
A.
, and
Ngamsanroaj
,
K.
,
2018
, “
Application of Machine Learning for Predictive Maintenance Cooling System in Nam Ngum-1 Hydropower Plant
,” 16th International Conference on ICT and Knowledge Engineering (
ICT&KE
), Thailand, Nov. 21–23, pp.
1
5
.10.1109/ICTKE.2018.8612435
49.
da Silva
,
P. R. N.
,
Gabbar
,
H. A.
,
Junior
,
P. V.
, and
da Costa Junior
,
C. T.
,
2018
, “
A New Methodology for Multiple Incipient Fault Diagnosis in Transmission Lines Using QTA and Naive Bayes Classifier
,”
Int. J. Elect. Power Energy Syst.
,
103
, pp.
326
346
.10.1016/j.ijepes.2018.05.036
50.
Li
,
Z.
,
Wang
,
Y.
, and
Wang
,
K. S.
,
2017
, “
Intelligent Predictive Maintenance for Fault Diagnosis and Prognosis in Machine Centers: Industry 4.0 Scenario
,”
Adv. Manuf.
,
5
(
4
), pp.
377
387
.10.1007/s40436-017-0203-8
51.
Saxena
,
A.
, and
Saad
,
A.
,
2007
, “
Evolving an Artificial Neural Network Classifier for Condition Monitoring of Rotating Mechanical Systems
,”
Appl. Soft Comput.
,
7
(
1
), pp.
441
454
.10.1016/j.asoc.2005.10.001
52.
Benkedjouh
,
T.
,
Medjaher
,
K.
,
Zerhouni
,
N.
, and
Rechak
,
S.
,
2013
, “
Remaining Useful Life Estimation Based on Nonlinear Feature Reduction and Support Vector Regression
,”
Eng. Appl. Artif. Intell.
,
26
(
7
), pp.
1751
1760
.10.1016/j.engappai.2013.02.006
53.
Mitchell
,
T.
,
1997
,
Machine Learning
,
McGraw-Hill Science/Engineering/Math
, 1, p.
27
.
54.
Witten
,
I. H.
,
Frank
,
E.
,
Hall
,
M. A.
, and
Pal
,
C. J.
,
2016
,
Data Mining: Practical Machine Learning Tools and Techniques
,
Morgan Kaufmann
, Burlington, MA.
55.
Gross
,
P.
,
Boulanger
,
A.
,
Arias
,
M.
,
Waltz
,
D. L.
,
Long
,
P. M.
,
Lawson
,
C.
,
Anderson
,
R.
,
Koenig
,
M.
,
Mastrocinque
,
M.
,
Fairechio
,
W.
, and
Johnson
,
J. A.
,
2006
, “
Predicting Electricity Distribution Feeder Failures Using Machine Learning Susceptibility Analysis
,”
AAAI
, pp.
1705
1711
.
56.
Prytz
,
R.
,
2014
, “
Machine Learning Methods for Vehicle Predictive Maintenance Using Off-Board and On-Board Data
,” Doctoral dissertation,
Halmstad University Press
, Halmstad, Sweden.
57.
Parpala
,
R. C.
, and
Iacob
,
R.
,
2017
, “
Application of IoT Concept on Predictive Maintenance of Industrial Equipment
,”
MATEC Web of Conferences
, EDP Sciences, Vol.
121
, Jan. 7, p.
02008
.
58.
Shalf
,
J. M.
, and
Leland
,
R.
,
2015
, “
Computing Beyond Moore's Law
,”
Computing
,
48
(
12
), pp.
14
23
.10.1109/MC.2015.374
59.
Wang
,
J.
,
Zhang
,
L.
,
Duan
,
L.
, and
Gao
,
R. X.
,
2017
, “
A New Paradigm of Cloud-Based Predictive Maintenance for Intelligent Manufacturing
,”
J. Intell. Manuf.
,
28
(
5
), pp.
1125
1137
.10.1007/s10845-015-1066-0
60.
Abdallah
,
I.
,
Dertimanis
,
V.
,
Mylonas
,
H.
,
Tatsis
,
K.
,
Chatzi
,
E.
,
Dervilis
,
N.
, and
Maguire
,
E.
,
2018
, “
Fault Diagnosis of Wind Turbine Structures Using Decision Tree Learning Algorithms With Big Data
,” Safety and Reliability–Safe Societies in a Changing World, Trondheim, Norway, Jun. 17, pp.
3053
3061
.
61.
Wang
,
K.
, and
Wang
,
Y.
,
2017
,
How AI Affects the Future Predictive Maintenance: A Primer of Deep Learning
.
International Workshop of Advanced Manufacturing and Automation
, Sept. 11, Springer, Singapore, pp.
1
9
.
62.
Tamilselvan
,
P.
, and
Wang
,
P.
,
2013
, “
Failure Diagnosis Using Deep Belief Learning Based Health State Classification
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
124
135
.10.1016/j.ress.2013.02.022
63.
Sica
,
F. C.
,
Guimarães
,
F. G.
,
de Oliveira Duarte
,
R.
, and
Reis
,
A. J.
,
2015
, “
A Cognitive System for Fault Prognosis in Power Transformers
,”
Electr. Power Syst. Res.
,
127
, pp.
109
117
.10.1016/j.epsr.2015.05.014
64.
Cline
,
B.
,
Niculescu
,
R. S.
,
Huffman
,
D.
, and
Deckel
,
B.
,
2017
, “
Predictive Maintenance Applications for Machine Learning
,”
Annual Reliability and Maintainability Symposium (RAMS)
, Orlando, FL, Jan. 23, pp.
1
7
.
65.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2020
, “
Damage Classification of Composites Based on Analysis of Lamb Wave Signals Using Machine Learning
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B
,
7
(1), p.
011002
.10.1115/1.4048867
66.
Candanedo
,
I. S.
,
Nieves
,
E. H.
,
González
,
S. R.
,
Martín
,
M. T. S.
, and
Briones
,
A. G.
,
2018
, “
Machine Learning Predictive Model for Industry 4.0
,”
International Conference on Knowledge Management in Organizations
, Aug. 6,
Springer
,
Cham
, pp.
501
510
.
67.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
, and
Kumara
,
S.
,
2016
, “
Cloud-Based Machine Learning for Predictive Analytics: Tool Wear Prediction in Milling
,” IEEE International Conference on Big Data (
Big Data
), Washington, DC, Dec. 5–8, pp.
2062
2069
.10.1109/BigData.2016.7840831
68.
Yuan
,
W.
,
Chin
,
K. S.
,
Hua
,
M.
,
Dong
,
G.
, and
Wang
,
C.
,
2016
, “
Shape Classification of Wear Particles by Image Boundary Analysis Using Machine Learning Algorithms
,”
Mech. Syst. Signal Process.
,
72
73
, pp.
346
358
.10.1016/j.ymssp.2015.10.013
69.
Rudin
,
C.
,
Waltz
,
D.
,
Anderson
,
R. N.
,
Boulanger
,
A.
,
Salleb-Aouissi
,
A.
,
Chow
,
M.
,
Dutta
,
H.
,
Gross
,
P. N.
,
Huang
,
B.
,
Ierome
,
S.
,
Isaac
,
D. F.
,
Kressner
,
A.
,
Passonneau
,
R. J.
,
Radeva
,
A.
, and
Wu
,
L.
,
2012
, “
Machine Learning for the New York City Power Grid
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
34
(
2
), pp.
328
345
.10.1109/TPAMI.2011.108
70.
Durbhaka
,
G. K.
, and
Selvaraj
,
B.
,
2016
, “
Predictive Maintenance for Wind Turbine Diagnostics Using Vibration Signal Analysis Based on Collaborative Recommendation Approach
,” International Conference on Advances in Computing, Communications and Informatics (
ICACCI
), Jaipur, India, Sept. 21–24, pp.
1839
1842
.10.1109/ICACCI.2016.7732316
71.
Zhang
,
S.
,
Hodkiewicz
,
M.
,
Ma
,
L.
, and
Mathew
,
J.
,
2006
,
Machinery Condition Prognosis Using Multivariate Analysis. Engineering Asset Management
,
Springer
London
, pp.
847
854
.
72.
Hosmer
,
D. W.
, Jr.
,
Lemeshow
,
S.
, and
Sturdivant
,
R. X.
,
2013
,
Applied Logistic Regression
, Vol.
398
,
Wiley, Hoboken, NJ
.
73.
Phillips
,
J.
,
Cripps
,
E.
,
Lau
,
J. W.
, and
Hodkiewicz
,
M. R.
,
2015
, “
Classifying Machinery Condition Using Oil Samples and Binary Logistic Regression
,”
Mech. Syst. Signal Process.
,
60
61
, pp.
316
325
.10.1016/j.ymssp.2014.12.020
74.
Bastos
,
P.
,
Lopes
,
I.
, and
Pires
,
L. C. M.
,
2014
, “
Application of Data Mining in a Maintenance System for Failure Prediction
,”
Safety, Reliability and Risk Analysis: Beyond the Horizon: 22nd European Safety and Reliability
, Vol.
1
, Wroclaw, Poland, Sept. 14, pp.
933
940
.
75.
Pandya
,
R.
, and
Pandya
,
J.
,
2015
, “
C5.0 Algorithm to Improved Decision Tree With Feature Selection and Reduced Error Pruning
,”
Int. J. Comput. Appl.
,
117
(
16
), pp.
18
21
.10.5120/20639-3318
76.
Kabir
,
F.
,
Foggo
,
B.
, and
Yu
,
N.
,
2018
, “
Data Driven Predictive Maintenance of Distribution Transformers
,”
China International Conference on Electricity Distribution (CICED)
, Sept. 17, pp.
312
316
.
77.
Yang
,
J.
, and
Zhang
,
Y.
,
2005
, “
Application Research of Support Vector Machines in Condition Trend Prediction of Mechanical Equipment
,”
International Symposium on Neural Networks
,
Springer
, Berlin, Germany, May 30, pp.
857
864
.
78.
Taghizadeh
,
A.
, and
Demirel
,
N.
,
2017
, “
Application of Machine Learning for Dragline Failure Prediction
,”
E3S Web of Conferences
, Vol.
15
, EDP Sciences, Kemerovo, Russian Federation, Apr. 24, p.
03002
.
79.
Banerjee
,
T. P.
, and
Das
,
S.
,
2012
, “
Multi-Sensor Data Fusion Using Support Vector Machine for Motor Fault Detection
,”
Inf. Sci.
,
217
, pp.
96
107
.10.1016/j.ins.2012.06.016
80.
Deák
,
K.
,
Kocsis
,
I.
,
Vámosi
,
A.
, and
Keviczki
,
Z.
,
2014
, “
Failure Diagnostics With SVM in Machine Maintenance Engineering
,”
Ann. Oradea Univ.
, (1), pp.
19
24
.
81.
Widodo
,
A.
, and
Yang
,
B. S.
,
2011
, “
Application of Relevance Vector Machine and Survival Probability to Machine Degradation Assessment
,”
Expert Syst. Appl.
,
38
(
3
), pp.
2592
2599
.10.1016/j.eswa.2010.08.049
82.
Sugumaran
,
V.
, and
Ramachandran
,
K. I.
,
2011
, “
Effect of Number of Features on Classification of Roller Bearing Faults Using SVM and PSVM
,”
Expert Syst. Appl.
,
38
(
4
), pp.
4088
4096
.10.1016/j.eswa.2010.09.072
83.
Zhang
,
C.
, and
Ma
,
Y.
,
2012
,
Ensemble Machine Learning: Methods and Applications
,
Springer Science & Business Media
, Berlin, Germany.
84.
Vasilić
,
P.
,
Vujnović
,
S.
,
Popović
,
N.
,
Marjanović
,
A.
, and
Đurović
,
Ž.
,
2018
, “
Adaboost Algorithm in the Frame of Predictive Maintenance Tasks
,” 23rd International Scientific-Professional Conference on Information Technology (
IT
), Zabljak, Montenegro, Feb. 19–24, pp.
1
4
.10.1109/SPIT.2018.8350846
85.
Wang
,
S.
, and
Yao
,
X.
,
2013
, “
Using Class Imbalance Learning for Software Defect Prediction
,”
IEEE Trans. Reliab.
,
62
(
2
), pp.
434
443
.10.1109/TR.2013.2259203
86.
Zimek
,
A.
,
Schubert
,
E.
, and
Kriegel
,
H. P.
,
2012
, “
A Survey on Unsupervised Outlier Detection in High‐Dimensional Numerical Data
,”
Stat. Anal. Data Min.
,
5
(
5
), pp.
363
387
.10.1002/sam.11161
87.
Samanta
,
S.
,
Bera
,
J. N.
, and
Sarkar
,
G.
,
2016
, “
KNN Based Fault Diagnosis System for Induction Motor
,” Second International Conference on Control, Instrumentation, Energy & Communication (
CIEC
), Kolkata, India, Jan. 28–30, pp.
304
308
.10.1109/CIEC.2016.7513791
88.
Susto
,
G. A.
,
Schirru
,
A.
,
Pampuri
,
S.
,
McLoone
,
S.
, and
Beghi
,
A.
,
2015
, “
Machine Learning for Predictive Maintenance: A Multiple Classifier Approach
,”
IEEE Trans. Ind. Inf.
,
11
(
3
), pp.
812
820
.10.1109/TII.2014.2349359
89.
Mosallam
,
A.
,
Medjaher
,
K.
, and
Zerhouni
,
N.
,
2016
, “
Data-Driven Prognostic Method Based on Bayesian Approaches for Direct Remaining Useful Life Prediction
,”
J. Intell. Manuf.
,
27
(
5
), pp.
1037
1048
.10.1007/s10845-014-0933-4
90.
Rish
,
I.
,
2001
, “
An Empirical Study of the Naive Bayes Classifier
,”
IJCAI Workshop on Empirical Methods in Artificial Intelligence
, Vol.
3
, Seattle, WA, Aug. 4, pp.
41
46
.
91.
Mehta
,
P.
,
Werner
,
A.
, and
Mears
,
L.
,
2015
, “
Condition Based Maintenance-Systems Integration and Intelligence Using Bayesian Classification and Sensor Fusion
,”
J. Intell. Manuf.
,
26
(
2
), pp.
331
346
.10.1007/s10845-013-0787-1
92.
Koprinkova-Hristova
,
P.
,
2013
, “
Reinforcement Learning for Predictive Maintenance of Industrial Plants
,”
Inf. Technol. Control
,
11
(
1
), pp.
21
28
.10.2478/itc-2013-0004
93.
Zhang
,
C.
,
Gupta
,
C.
,
Farahat
,
A.
,
Ristovski
,
K.
, and
Ghosh
,
D.
,
2018
, “
Equipment Health Indicator Learning Using Deep Reinforcement Learning
,”
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
,
Springer
, Cham, Sept. 10, pp.
488
504
.
94.
Kuhnle
,
A.
,
Jakubik
,
J.
, and
Lanza
,
G.
,
2019
, “
Reinforcement Learning for Opportunistic Maintenance Optimization
,”
Prod. Eng.
,
13
(
1
), pp.
33
41
.10.1007/s11740-018-0855-7
95.
Ong
,
K. S.
,
Niyato
,
D.
, and
Yuen
,
C.
,
2020
, “
Predictive Maintenance for Edge-Based Sensor Networks: A Deep Reinforcement Learning Approach
,” IEEE Sixth World Forum on Internet of Things (WF-IoT), New Orleans, LA, July 15, pp.
1
6
.
96.
Zhang
,
N.
, and
Si
,
W.
,
2020
, “
Deep Reinforcement Learning for Condition-Based Maintenance Planning of Multi-Component Systems Under Dependent Competing Risks
,”
Reliab. Eng. Syst. Saf.
,
203
, p.
107094
.10.1016/j.ress.2020.107094
97.
Hothorn
,
T.
, and
Everitt
,
B. S.
,
2014
,
A Handbook of Statistical Analyses Using R
,
Chapman and Hall/CRC
, Boca Raton, FL.
98.
Lattimore
,
T.
, and
Hutter
,
M.
,
2013
, “
No Free Lunch Versus Occam's Razor in Supervised Learning
,”
Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence
,
Springer
,
Berlin, Germany
, pp.
223
235
.
99.
Dangut
,
M. D.
,
Skaf
,
Z.
, and
Jennions
,
I.
,
2020
, “
An Integrated Machine Learning Model for Aircraft Components Rare Failure Prognostics With Log-Based Dataset
,”
ISA Trans.
, in press.10.1016/j.isatra.2020.05.001
100.
Peruffo
,
E.
,
2018
, “
Improving Predictive Maintenance Classifiers of Industrial Sensors' Data Using Entropy
,” A Case Study, Doctoral dissertation, National College of Ireland, Dublin.
101.
Kiangala
,
K. S.
, and
Wang
,
Z.
,
2020
, “
An Effective Predictive Maintenance Framework for Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network in an Industry 4.0 Environment
,”
IEEE Access
,
8
, pp.
121033
121049
.10.1109/ACCESS.2020.3006788
102.
Laumann
,
K.
, and
Skogstad
,
M. R.
,
2020
, “
Challenge to Collect Empirical Data for Human Reliability Analysis—Illustrated by the Difficulties in Collecting Empirical Data on the Performance-Shaping Factor Complexity
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B
,
6
(
1
), p. 011013.10.1115/1.4044795
103.
Spiegel
,
S.
,
Mueller
,
F.
,
Weismann
,
D.
, and
Bird
,
J.
,
2018
, “
Cost-Sensitive Learning for Predictive Maintenance
,” arXiv preprint arXiv:1809.10979.
You do not currently have access to this content.