Abstract

The well-known standardized plant analysis risk-human reliability (SPAR-H) methodology is widely used for analysis of human reliability in complex technological systems. It allows assessing the human error probability taking into account eight important groups of performance shaping factors. Application of this methodology to practical problems traditionally involves assumptions which are difficult to verify under the conditions of uncertainty. In particular, it introduces only two possible values of the nominal human error probabilities (for diagnosis and for actions) which do not cover the whole spectrum of the tasks within operator's activity. In addition, although the traditional methodology considers the probabilities of human errors as the random variables, it operates only on a single predefined type of distribution for these variables and does not deal with the real situations in which the type of distribution remains uncertain. The paper proposes modification to the classical approach to enable more adequate modeling of real situations with the lack of available information. The authors suggest usage of the interval-valued probability technique and of the expert judgment on the maximum probability density for actual probabilities of human errors. Such methodology allows obtaining generic results that are valid for the entire set of possible distributions (not only for one of them). The modified methodology gives possibility to derive final assessments of human reliability in interval form indicating “the best case” and “the worst case.” A few numerical examples illustrate the main stages of the suggested procedure.

References

1.
Di Pasquale
,
V.
,
Iannone
,
R.
,
Miranda
,
S.
, and
Riemma
,
S.
,
2013
, “
An Overview of Human Reliability Analysis Techniques in Manufacturing Operations
,”
Operations Management
,
V. V.
Shiraldi
, ed.,
InTech
,
Rijeka, Croatia
, pp.
221
240
.
2.
Gertman
,
D.
,
Blackman
,
H.
,
Marble
,
J.
,
Byers
,
J.
, and
Smith
,
C.
,
2005
, “
The SPAR-H Human Reliability Analysis Method
,” U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research,
Washington, DC
, Report No. NUREG/GR–6883.
3.
Whaley
,
A. M.
,
Kelly
,
D. L.
,
Boring
,
R. L.
, and
Galyean
,
W. G.
,
2011
, “
Step-by-Step SPAR-H Guidance
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. INL/EXT-10-18533, Rev. 2.
4.
Calixto
,
E.
,
2013
,
Gas and Oil Engineering. Modelling and Analysis
,
Gulf Professional Publishing, Elsevier
,
Cambridge, MA
.
5.
Bokil
,
S. R.
, and
Gupta
,
R. K.
,
2007
, “
Human Reliability Analysis Method—SPAR-H—A Review
,”
Int. J. Sci., Eng. Manage.
,
2
(
7
), pp.
43
46
.https://www.technoarete.org/common_abstract//pdf/IJSEM/v4/i7/Ext_34165.pdf
6.
Atwood
,
C. L.
,
1996
, “
Constrained Non-Informative Priors in Risk Assessment
,”
Reliab. Eng. Syst. Saf.
,
53
(
1
), pp.
37
46
.10.1016/0951-8320(96)00026-9
7.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev., Ser. II
,
106
(
4
), pp.
620
630
.10.1103/PhysRev.106.620
8.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev., Ser. II
,
108
(
2
), pp.
171
190
.10.1103/PhysRev.108.171
9.
Kelly
,
D. L.
,
Youngblood
,
R. W.
, and
Vedros
,
K. G.
,
2010
, “
Minimally Informative Prior Distributions for PSA
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. INL/CON-10-18287.
10.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM/ Cambridge University Press
,
Cambridge, UK
.
11.
Shary
,
S. P.
,
2012
, “
Solvability of Interval Linear Equations and Data Analysis Under Uncertainty
,”
Autom. Remote Control
,
73
(
2
), pp.
310
322
.10.1134/S0005117912020099
12.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall
,
London
.
13.
Kuznetsov
,
V. P.
,
1991
,
Interval Statistical Models
,
Sovetskoe Radio
,
Moscow
(in Russian).
14.
Kozine
,
I. O.
, and
Utkin
,
L. V.
,
2002
, “
Unreliable Judgment With an Imprecise Hierarchical Model
,”
Risk, Decis. Policy
,
7
(
3
), pp.
325
339
.10.1017/S1357530902000716
15.
Utkin
,
L. V.
, and
Kozine
,
I. O.
,
2001
, “
Different Faces of the Natural Extension
,”
Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications
,
Ithaka, NY, June 26–29, Shaker Publication
,
Maastricht
, pp.
316
323
.
16.
Krymsky
,
V. G.
,
2006
, “
Computing Interval Bounds for Statistical Characteristics Under Expert-Provided Bounds on Probability Density Functions
,”
Lecture Notes Comput. Sci.
,
3732
, pp.
151
160
.10.1007/11558958
17.
Kozine
,
I. O.
, and
Krymsky
,
V. G.
,
2009
, “
Computing Interval-Valued Statistical Characteristics: What is the Stumbling Block for Reliability Applications?
,”
Int. J. General Syst.
,
38
(
5
), pp.
547
565
.10.1080/03081070802187798
18.
Krymsky
,
V. G.
,
2014
, “
Control Theory Based Uncertainty Model for Reliability Applications
,”
Int. J. Perform. Eng.
,
10
(
5
), pp.
477
486
.10.23940/ijpe.14.5.p477.mag
19.
Kozine
,
I.
, and
Krymsky
,
V.
,
2017
, “
Computing Interval-Valued Reliability Measures: Application of Optimal Control Methods
,”
Int. J. General Syst.
,
46
(
2
), pp.
144
157
.10.1080/03081079.2017.1294167
20.
Pontryagin
,
L. S.
,
Boltyanskii
,
V. G.
,
Gamkrelidze
,
R. V.
, and
Mishchenko
,
E. F.
,
1962
,
The Mathematical Theory of Optimal Processes
, K. N. Trigoroff, trans.,
L. W.
Neustadt
, eds.,
Interscience Publishers
,
New York
.
21.
Hestenes
,
M. R.
,
1966
,
Calculus of Variations and Optimal Control Theory
,
Wiley
,
New York
.
22.
Boring
,
R. L.
,
2015
, “
Adapting Human Reliability Analysis From Nuclear Power to Oil and Gas Applications
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. INL/CON -15-35411.
23.
Laumann
,
K.
, and
Rasmussen
,
M.
,
2016
, “
Suggested Improvements to the Definitions of Standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-H) Performance Shaping Factors, Their Levels and Multipliers and the Nominal Tasks
,”
Reliab. Eng. Syst. Saf.
,
145
, pp.
287
300
.10.1016/j.ress.2015.07.022
24.
Laumann
,
K.
, and
Rasmussen Skogstad
,
M.
,
2020
, “
Challenge to Collect Empirical Data for Human Reliability Analysis—Illustrated by the Difficulties in Collecting Empirical Data on the Performance-Shaping Factor Complexity
,”
ASME J. Risk Uncertainty: Part B
,
6
(
1
), p.
011013
.10.1115/1.4044795
25.
Bye
,
A.
,
Laumann
,
K.
,
Taylor
,
C.
,
Rasmussen
,
M.
,
Øie
,
S.
,
van de Merwe
,
K.
,
Øien
,
K.
,
Boring
,
R.
,
Paltrinieri
,
N.
,
Wærø
,
I.
,
Massaiu
,
S.
, and
Gould
,
K.
,
2017
, “
The Petro-HRA Guideline
,”
Institute for Energy Technology
,
Halden, Norway
, Report No. IFE/HR/E-2017/001.
26.
Liu
,
P.
,
Qiu
,
Y.
,
Hu
,
J.
,
Tong
,
J.
,
Zhao
,
J.
, and
Li
,
Z.
,
2020
, “
Expert Judgments for Performance Shaping Factors' Multiplier Design in Human Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
194
, p.
106343
.10.1016/j.ress.2018.12.022
27.
Baraldi
,
P.
,
Podofillini
,
L.
,
Mkrtchyan
,
L.
,
Zio
,
E.
, and
Dang
,
V. N.
,
2015
, “
Comparing the Treatment of Uncertainty in Bayesian Networks and Fuzzy Expert Systems Used for a Human Reliability Analysis Application
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
176
193
.10.1016/j.ress.2015.01.016
28.
Morais
,
C.
,
Moura
,
R.
,
Beer
,
M.
, and
Patelli
,
E.
,
2020
, “
Analysis and Estimation of Human Errors From Major Accident Investigation Reports
,”
ASME J. Risk Uncertainty Part B
,
6
(
1
), p.
011014
.10.1115/1.4044796
29.
Boring
,
R. L.
,
Forester
,
J. A.
,
Bye
,
A.
,
Dang
,
V. N.
, and
Lois
,
E.
,
2012
, “
Lessons Learned on Benchmarking From the International Human Reliability Analysis Empirical Study
,”
Proceedings of the 10th Probabilistic Safety Assessment and Management Conference
,
Curran Associates, Inc
.,
Red Hook, NY
, pp.
1216
1227
.
30.
Leva
,
M. C.
,
De Ambroggi
,
M.
,
Grippa
,
D.
,
De Garis
,
R.
,
Trucco
,
P.
, and
Sträter
,
O.
,
2009
, “
Quantitative Analysis of ATM Safety Issues Using Retrospective Accident Data: The Dynamic Risk Modelling Project
,”
Saf. Sci.
,
47
(
2
), pp.
250
264
.10.1016/j.ssci.2008.04.002
You do not currently have access to this content.