Abstract

This paper assesses the vibratory energy harvesting performance of a tuned inertial mass electromagnetic transducer (TIMET) through hardware-in-the-loop (HIL) testing under random vibration. The TIMET has been developed by adding a tuning spring and an extra rotational inertial mass to a conventional electromagnetic transducer (ET) with a motor. The authors have already shown that the energy harvesting efficiency of the TIMET can be increased by taking advantage of the mechanical resonance effect of the rotational inertial mass due to the tuning spring through numerical simulation studies. In addition, further improvement in power generation of the TIMET can be achieved theoretically by controlling the current to the motor based on the appropriately developed algorithms. In this paper, the superiority of the TIMET over the ET under random disturbances when the current to the motor is controlled by the algorithms proposed for the ET in the literature is experimentally verified. Moreover, the accuracy of the numerical simulation using the developed device models is validated by comparing with the test results.

References

1.
Priya
,
S.
, and
Inman
,
D.
,
2008
,
Energy Harvesting Technologies
,
Springer US
,
Boston, MA
.
2.
Wei
,
C.
, and
Jing
,
X.
,
2017
, “
A Comprehensive Review on Vibration Energy Harvesting: Modelling and Realization
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
1
18
.10.1016/j.rser.2017.01.073
3.
Siang
,
J.
,
Lim
,
M.
, and
Salman Leong
,
M.
,
2018
, “
Review of Vibration-Based Energy Harvesting Technology: Mechanism and Architectural Approach
,”
Int. J. Energy Res.
,
42
(
5
), pp.
1866
1893
.10.1002/er.3986
4.
Cook-Chennault
,
K. A.
,
Thambi
,
N.
, and
Sastry
,
A. M.
,
2008
, “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
17
(
4
), p.
043001
.10.1088/0964-1726/17/4/043001
5.
Shaikh
,
F. K.
, and
Zeadally
,
S.
,
2016
, “
Energy Harvesting in Wireless Sensor Networks: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
1041
1054
.10.1016/j.rser.2015.11.010
6.
Ulukus
,
S.
,
Yener
,
A.
,
Erkip
,
E.
,
Simeone
,
O.
,
Zorzi
,
M.
,
Grover
,
P.
, and
Huang
,
K.
,
2015
, “
Energy Harvesting Wireless Communications: A Review of Recent Advances
,”
IEEE J. Sel. Areas Commun.
,
33
(
3
), pp.
360
381
.10.1109/JSAC.2015.2391531
7.
Karimi
,
M.
,
Karimi
,
A.
,
Tikani
,
R.
, and
Ziaei-Rad
,
S.
,
2016
, “
Experimental and Theoretical Investigations on Piezoelectric-Based Energy Harvesting From Bridge Vibrations Under Travelling Vehicles
,”
Int. J. Mech. Sci.
,
119
, pp.
1
11
.10.1016/j.ijmecsci.2016.09.029
8.
Safaei
,
M.
,
Sodano
,
H. A.
, and
Anton
,
S. R.
,
2019
, “
A Review of Energy Harvesting Using Piezoelectric Materials: State-of-the-Art a Decade Later (2008-2018)
,”
Smart Mater. Struct.
,
28
(
11
), p.
113001
.10.1088/1361-665X/ab36e4
9.
Park
,
G.
,
Rosing
,
T.
,
Todd
,
M. D.
,
Farrar
,
C. R.
, and
Hodgkiss
,
W.
,
2008
, “
Energy Harvesting for Structural Health Monitoring Sensor Networks
,”
J. Infrastruct. Syst.
,
14
(
1
), pp.
64
79
.10.1061/(ASCE)1076-0342(2008)14:1(64)
10.
Zuo
,
L.
, and
Tang
,
X.
,
2013
, “
Large-Scale Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1405
1430
.10.1177/1045389X13486707
11.
Nakano
,
K.
,
Suda
,
Y.
, and
Nakadai
,
S.
,
2003
, “
Self-Powered Active Vibration Control Using a Single Electric Actuator
,”
J. Sound Vib.
,
260
(
2
), pp.
213
235
.10.1016/S0022-460X(02)00980-X
12.
Scruggs
,
J. T.
, and
Iwan
,
W. D.
,
2003
, “
Control of a Civil Structure Using an Electric Machine With Semiactive Capability
,”
J. Struct. Eng.
,
129
(
7
), pp.
951
959
.10.1061/(ASCE)0733-9445(2003)129:7(951)
13.
Jamshidi
,
M.
,
Chang
,
C.
, and
Bakhshi
,
A.
,
2017
, “
Self-Powered Hybrid Electromagnetic Damper for Cable Vibration Mitigation
,”
Smart Struct. Syst.
,
20
(
3
), pp.
285
301
.10.12989/sss.2017.20.3.285
14.
Asai
,
T.
, and
Scruggs
,
J. T.
,
2016
, “
Nonlinear Stochastic Control of Self-Powered Variable-Damping Vibration Control Systems
,”
American Control Conference (ACC)
,
Boston, MA
, July 6–8, pp.
442
448
.
15.
Cassidy
,
I. L.
,
Scruggs
,
J. T.
, and
Behrens
,
S.
,
2011
, “
Optimization of Partial-State Feedback for Vibratory Energy Harvesters Subjected to Broadband Stochastic Disturbances
,”
Smart Mater. Struct.
,
20
(
8
), p.
085019
.10.1088/0964-1726/20/8/085019
16.
Cassidy
,
I. L.
, and
Scruggs
,
J. T.
,
2013
, “
Nonlinear Stochastic Controllers for Power-Flow-Constrained Vibratory Energy Harvesters
,”
J. Sound Vib.
,
332
(
13
), pp.
3134
3147
.10.1016/j.jsv.2013.01.023
17.
Caruso
,
G.
,
Galeani
,
S.
, and
Menini
,
L.
,
2018
, “
Semi-Active Damping and Energy Harvesting Using an Electromagnetic Transducer
,”
J. Vib. Control
,
24
(
12
), pp.
2542
2561
.10.1177/1077546316688993
18.
Monaco
,
F. D.
,
Tehrani
,
M. G.
,
Elliott
,
S. J.
,
Bonisoli
,
E.
, and
Tornincasa
,
S.
,
2013
, “
Energy Harvesting Using Semi-Active Control
,”
J. Sound Vib.
,
332
(
23
), pp.
6033
6043
.10.1016/j.jsv.2013.06.005
19.
Shen
,
W.
,
Zhu
,
S.
, and
Zhu
,
H.
,
2019
, “
Unify Energy Harvesting and Vibration Control Functions in Randomly Excited Structures With Electromagnetic Devices
,”
J. Eng. Mech.
,
145
(
1
), p.
04018115
.10.1061/(ASCE)EM.1943-7889.0001548
20.
Asai
,
T.
,
Araki
,
Y.
, and
Ikago
,
K.
,
2017
, “
Energy Harvesting Potential of Tuned Inertial Mass Electromagnetic Transducers
,”
Mech. Syst. Signal Process.
,
84
(
Part A
), pp.
659
672
.10.1016/j.ymssp.2016.07.048
21.
Sugiura
,
K.
,
Watanabe
,
Y.
,
Asai
,
T.
,
Araki
,
Y.
, and
Ikago
,
K.
,
2019
. “
Experimental Characterization and Performance Improvement Evaluation of an Electromagnetic Transducer Utilizing a Tuned Inerter
,”
J. Vib. Control
,
26
(
1–2
), pp.
56
72
.10.1177/1077546319876396
22.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.10.1109/TAC.2002.803532
23.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
.10.1002/eqe.1138
24.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper-Inerter (Tmdi) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.10.1016/j.probengmech.2014.03.007
25.
Lazar
,
I. F.
,
Neild
,
S.
, and
Wagg
,
D.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
.10.1002/eqe.2390
26.
Hu
,
Y.
, and
Chen
,
M. Z.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.10.1016/j.ijmecsci.2015.06.003
27.
Brzeski
,
P.
,
Lazarek
,
M.
, and
Perlikowski
,
P.
,
2017
, “
Experimental Study of the Novel Tuned Mass Damper With Inerter Which Enables Changes of Inertance
,”
J. Sound Vib.
,
404
, pp.
47
57
.10.1016/j.jsv.2017.05.034
28.
Zhu
,
H.
,
Li
,
Y.
,
Shen
,
W.
, and
Zhu
,
S.
,
2019
, “
Mechanical and Energy-Harvesting Model for Electromagnetic Inertial Mass Dampers
,”
Mech. Syst. Signal Process.
,
120
, pp.
203
220
.10.1016/j.ymssp.2018.10.023
29.
Marian
,
L.
, and
Giaralis
,
A.
,
2017
, “
The Tuned Mass-Damper-Inerter for Harmonic Vibrations Suppression, Attached Mass Reduction, and Energy Harvesting
,”
Smart Struct. Syst.
,
19
(
6
), pp.
665
678
.10.12989/sss.2017.19.6.665
30.
Cassidy
,
I.
,
Scruggs
,
J.
,
Behrens
,
S.
, and
Gavin
,
H. P.
,
2011
, “
Design and Experimental Characterization of an Electromagnetic Transducer for Large-Scale Vibratory Energy Harvesting Applications
,”
J. Intell. Mater. Syst. Struct.
,
22
(
17
), pp.
2009
2024
.10.1177/1045389X11421824
31.
Nakashima
,
M.
,
Kato
,
H.
, and
Takaoka
,
E.
,
1992
, “
Development of Real-Time Pseudo Dynamic Testing
,”
Earthquake Eng. Struct. Dyn.
,
21
(
1
), pp.
79
92
.10.1002/eqe.4290210106
32.
Phillips
,
B. M.
, and
Spencer
,
B. F.
, Jr.
,
2012
,
Model-Based Framework for Real-Time Dynamic Structural Performance Evaluation
,
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign
,
Urbana, IL
, Report No. NSEL-031.
33.
Asai
,
T.
,
Chang
,
C.-M.
, and
Spencer
,
B. F.
,
2015
, “
Real-Time Hybrid Simulation of a Smart Base-Isolated Building
,”
J. Eng. Mech.
,
141
(
3
), p.
04014128
.10.1061/(ASCE)EM.1943-7889.0000844
34.
Dorato
,
P.
,
Abdallah
,
C.
, and
Cerone
,
V.
,
1995
,
Linear Quadratic Control: An Introduction
,
Krieger Publishing Company
,
Englewood Cliffs, NJ
.
35.
Stengel
,
R.
,
1986
,
Optimal Control and Estimation
,
Dover Books on Advanced Mathematics. Dover Publications
,
Mineola, NY
.
36.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
37.
Kalman
,
R. E.
, and
Bucy
,
R. S.
,
1961
, “
New Results in Linear Filtering and Prediction Theory
,”
ASME J. Basic Eng.
,
83
(
1
), pp.
95
108
.10.1115/1.3658902
38.
Scruggs
,
J.
, and
McCullagh
,
J.
,
2018
, “
Analysis and Design of Vibratory Energy Harvesters Employing Three-Phase AC Transduction
,”
Mechatronics
,
50
, pp.
104
120
.10.1016/j.mechatronics.2018.01.015
39.
Pillay
,
P.
, and
Krishnan
,
R.
,
1989
, “
Modeling, Simulation, and Analysis of Permanent-Magnet Motor Drives: I—The Permanent-Magnet Synchronous Motor Drive
,”
IEEE Trans. Ind. Appl.
,
25
(
2
), pp.
265
273
.10.1109/28.25541
You do not currently have access to this content.