Abstract

A framework that allows the use of well-known dynamic estimators in piezoelectric harvesters (PEHs) (i.e., deterministic performance estimators) and that accounts for the random error associated with the mathematical model and the uncertainties of model parameters is presented here. This framework may be employed for Posterior Robust Stochastic analysis, such as when a harvester can be tested or is already installed and the experimental data are available. In particular, the framework detailed here is introduced to update the electromechanical properties of PEHs using Bayesian techniques. The updated electromechanical properties are identified by adopting a Transitional Markov Chain Monte Carlo. A well-known device with a nonlinear constitutive relationship is employed for experiments in this study, and the results demonstrated the capability of the proposed framework to update nonlinear electromechanical properties. The importance of including model parameter uncertainties to generate robust predictive tools is also supported by the results. Therefore, this framework constitutes a powerful tool for the robust design and prediction of PEH performance.

References

1.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
. 10.1115/1.2890402
2.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct
,
19
(
11
), pp.
1311
1325
.10.1177/1045389X07085639
3.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct
,
18
(
2
), p.
025009
.10.1088/0964-1726/18/2/025009
4.
Junior
,
C. D. M.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates
,”
J. Sound Vib.
,
327
(
1–2
), pp.
9
25
.10.1016/j.jsv.2009.05.015
5.
Von Wagner
,
U.
, and
Hagedorn
,
P.
,
2002
, “
Piezo–Beam Systems Subjected to Weak Electric Field: Experiments and Modelling of Non-Linearities
,”
J. Sound Vib.
,
256
(
5
), pp.
861
872
.10.1006/jsvi.2002.5024
6.
Stanton
,
S. C.
,
Erturk
,
A.
,
Mann
,
B. P.
,
Dowell
,
E. H.
, and
Inman
,
D. J.
,
2012
, “
Nonlinear Nonconservative Behavior and Modeling of Piezoelectric Energy Harvesters Including Proof Mass Effects
,”
J. Intell. Mater. Syst. Struct.
,
23
(
2
), pp.
183
199
.10.1177/1045389X11432656
7.
Abdelkefi
,
A.
,
Nayfeh
,
A.
, and
Hajj
,
M.
,
2012
, “
Global Nonlinear Distributed-Parameter Model of Parametrically Excited Piezoelectric Energy Harvesters
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1147
1160
.10.1007/s11071-011-0059-6
8.
Leadenham
,
S.
, and
Erturk
,
A.
,
2015
, “
Unified Nonlinear Electroelastic Dynamics of a Bimorph Piezoelectric Cantilever for Energy Harvesting, Sensing, and Actuation
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1727
1743
.10.1007/s11071-014-1770-x
9.
Akbar
,
M.
, and
Curiel-Sosa
,
J. L.
,
2017
, “
Evaluation of Piezoelectric Energy Harvester Under Dynamic Bending by Means of Hybrid Mathematical/Isogeometric Analysis
,”
Int. J. Mech. Mater. Des.
,
14
, pp.
1
21
.10.1007/s10999-017-9395-0
10.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2009
, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.10.1088/0964-1726/18/11/115005
11.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
12.
Kim
,
M.
,
Hoegen
,
M.
,
Dugundji
,
J.
, and
Wardle
,
B. L.
,
2010
, “
Modeling and Experimental Verification of Proof Mass Effects on Vibration Energy Harvester Performance
,”
Smart Mater. Struct.
,
19
(
4
), p.
045023
.10.1088/0964-1726/19/4/045023
13.
Ruiz
,
R. O.
, and
Meruane
,
V.
,
2017
, “
Uncertainties Propagation and Global Sensitivity Analysis of the Frequency Response Function of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
26
(
6
), p.
065003
.10.1088/1361-665X/aa6cf3
14.
Peralta
,
P.
,
Ruiz
,
R. O.
, and
Meruane
,
V.
,
2019
, “
Experimental Study of the Variations in the Electromechanical Properties of Piezoelectric Energy Harvesters and Their Impact on the Frequency Response Function
,”
Mech. Syst. Signal Process
,
115
, pp.
469
482
.10.1016/j.ymssp.2018.06.002
15.
de Godoy
,
T. C.
, and
Trindade
,
M. A.
,
2012
, “
Effect of Parametric Uncertainties on the Performance of a Piezoelectric Energy Harvesting Device
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
(
SPE2
), pp.
552
560
.10.1590/S1678-58782012000600003
16.
Gurav
,
S.
,
asyap
,
A.
,
Sheplak
,
M.
,
Cattafesta
,
L.
,
Haftka
,
R.
,
Goosen
,
J.
, and
Van Keulen
,
F.
,
2004
, “
Uncertainty-Based Design Optimization of a Micro Piezoelectric Composite Energy Reclamation Device
,”
AIAA Paper No. 2004-4619
.10.2514/6.2004-4619
17.
Ali
,
S. F.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Piezoelectric Energy Harvesting With Parametric Uncertainty
,”
Smart Mater. Struct.
,
19
(
10
), p.
105010
.10.1088/0964-1726/19/10/105010
18.
Franco
,
V. R.
, and
Varoto
,
P. S.
,
2017
, “
Parameter Uncertainties in the Design and Optimization of Cantilever Piezoelectric Energy Harvesters
,”
Mech. Syst. Signal Process
,
93
, pp.
593
609
.10.1016/j.ymssp.2017.02.030
19.
Hosseinloo
,
A. H.
, and
Turitsyn
,
K.
,
2016
, “
Design of Vibratory Energy Harvesters Under Stochastic Parametric Uncertainty: A New Optimization Philosophy
,”
Smart Mater. Struct.
,
25
(
5
), p.
055023
.10.1088/0964-1726/25/5/055023
20.
Seong
,
S.
,
Hu
,
C.
, and
Lee
,
S.
,
2017
, “
Design Under Uncertainty for Reliable Power Generation of Piezoelectric Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
28
(
17
), pp.
2437
2449
.10.1177/1045389X17689945
21.
Papadimitriou
,
C.
,
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
,
2001
, “
Updating Robust Reliability Using Structural Test Data
,”
Probab. Eng. Mech.
,
16
(
2
), pp.
103
113
.10.1016/S0266-8920(00)00012-6
22.
Beck
,
J. L.
, and
Taflanidis
,
A. A.
,
2013
, “
Prior and Posterior Robust Stochastic Predictions for Dynamical Systems Using Probability Logic
,”
Int. J. Uncertain. Quantif.
,
3
(
4
), pp.
271
288
.10.1615/Int.J.UncertaintyQuantification.2012003641
23.
Beck
,
J. L.
,
2010
, “
Bayesian System Identification Based on Probability Logic
,”
Struct. Control Health Monit.
,
17
(
7
), pp.
825
847
.10.1002/stc.424
24.
Peralta
,
P.
,
Ruiz
,
R. O.
, and
Taflanidis
,
A. A.
,
2020
, “
Bayesian Identification of Electromechanical Properties in Piezoelectric Energy Harvesters
,”
Mech. Syst. Signal Process
,
141
, p.
106506
.10.1016/j.ymssp.2019.106506
25.
Rosenkrantz
,
R. D.
, and
Jaynes
,
E. T.
,
2012
,
Papers on Probability, Statistics and Statistical Physics
, Vol.
158
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
26.
Yuen
,
K.-V.
,
2010
,
Bayesian Methods for Structural Dynamics and Civil Engineering
,
Wiley
,
Singapore
.
27.
Ching
,
J.
, and
Chen
,
Y.-C.
,
2007
, “
Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging
,”
J. Eng. Mech.
,
133
(
7
), pp.
816
832
.10.1061/(ASCE)0733-9399(2007)133:7(816)
28.
Betz
,
W.
,
Papaioannou
,
I.
, and
Straub
,
D.
,
2016
, “
Transitional Markov Chain Monte Carlo: Observations and Improvements
,”
J. Eng. Mech.
,
142
(
5
), p.
04016016
.10.1061/(ASCE)EM.1943-7889.0001066
29.
Beck
,
J. L.
, and
Au
,
S.-K.
,
2002
, “
Bayesian Updating of Structural Models and Reliability Using Markov Chain Monte Carlo Simulation
,”
J. Eng. Mech.
,
128
(
4
), pp.
380
391
.10.1061/(ASCE)0733-9399(2002)128:4(380)
30.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
John Wiley & Sons
,
Chichester, UK
.
You do not currently have access to this content.