Abstract

A methodology based on the Wiener path integral (WPI) technique is developed for stochastic response determination and reliability-based design optimization of a class of nonlinear electromechanical energy harvesters endowed with fractional derivative elements. In this regard, first, the WPI technique is appropriately adapted and enhanced to account both for the singular diffusion matrix and for the fractional derivative modeling of the capacitance in the coupled electromechanical governing equations. Next, a reliability-based design optimization problem is formulated and solved, in conjunction with the WPI technique, for determining the optimal parameters of the harvester. It is noted that the herein proposed definition of the failure probability constraint is particularly suitable for harvester configurations subject to space limitations. Several numerical examples are included, while comparisons with pertinent Monte Carlo simulation (MCS) data demonstrate the satisfactory performance of the methodology.

References

1.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
206
.10.1177/0583102404043275
2.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2005
, “
Generation and Storage of Electricity From Power Harvesting Devices
,”
J. Intell. Mater. Syst. Struct.
,
16
(
1
), pp.
67
75
.10.1177/1045389X05047210
3.
Wu
,
W.-J.
,
Chen
,
Y.-Y.
,
Lee
,
B.-S.
,
He
,
J.-J.
, and
Peng
,
Y.-T.
,
2006
, “
Tunable Resonant Frequency Power Harvesting Devices
,”
Smart Structures and Materials 2006: Damping and Isolation
,
San Diego, CA
, p.
61690A
.
4.
Soliman
,
M.
,
Abdel-Rahman
,
E.
,
El-Saadany
,
E.
, and
Mansour
,
R.
,
2008
, “
A Wideband Vibration-Based Energy Harvester
,”
J. Micromech. Microeng.
,
18
(
11
), p.
115021
.10.1088/0960-1317/18/11/115021
5.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.10.1115/1.4026278
6.
Gammaitoni
,
L.
,
Neri
,
I.
, and
Vocca
,
H.
,
2009
, “
Nonlinear Oscillators for Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
16
), p.
164102
.10.1063/1.3120279
7.
Adhikari
,
S.
,
Friswell
,
M.
, and
Inman
,
D.
,
2009
, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.10.1088/0964-1726/18/11/115005
8.
Barton
,
D. A.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.10.1115/1.4000809
9.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.10.1016/j.jsv.2010.12.005
10.
Yoon
,
H.
, and
Youn
,
B. D.
,
2014
, “
Stochastic Quantification of the Electric Power Generated by a Piezoelectric Energy Harvester Using a Time–Frequency Analysis Under Non-Stationary Random Vibrations
,”
Smart Mater. Struct.
,
23
(
4
), p.
045035
.10.1088/0964-1726/23/4/045035
11.
Freeborn
,
T. J.
,
Maundy
,
B.
, and
Elwakil
,
A. S.
,
2015
, “
Fractional-Order Models of Supercapacitors, Batteries and Fuel Cells: A Survey
,”
Mater. Renewable Sustainable Energy
,
4
(
3
), p.
9
.10.1007/s40243-015-0052-y
12.
Allagui
,
A.
,
Freeborn
,
T. J.
,
Elwakil
,
A. S.
,
Fouda
,
M. E.
,
Maundy
,
B. J.
,
Radwan
,
A. G.
,
Said
,
Z.
, and
Abdelkareem
,
M. A.
,
2018
, “
Review of Fractional-Order Electrical Characterization of Supercapacitors
,”
J. Power Sources
,
400
, pp.
457
467
.10.1016/j.jpowsour.2018.08.047
13.
Ngueuteu
,
G. M.
, and
Woafo
,
P.
,
2012
, “
Dynamics and Synchronization Analysis of Coupled Fractional-Order Nonlinear Electromechanical Systems
,”
Mech. Res. Commun.
,
46
, pp.
20
25
.10.1016/j.mechrescom.2012.08.003
14.
Kwuimy
,
C. K.
,
Litak
,
G.
, and
Nataraj
,
C.
,
2015
, “
Nonlinear Analysis of Energy Harvesting Systems With Fractional Order Physical Properties
,”
Nonlinear Dyn.
,
80
(
1–2
), pp.
491
501
.10.1007/s11071-014-1883-2
15.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
,
Hoboken, NJ
.
16.
Litak
,
G.
,
Friswell
,
M.
, and
Adhikari
,
S.
,
2010
, “
Magnetopiezoelastic Energy Harvesting Driven by Random Excitations
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214103
.10.1063/1.3436553
17.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
.10.1016/j.jsv.2010.04.002
18.
Green
,
P.
,
Worden
,
K.
,
Atallah
,
K.
, and
Sims
,
N.
,
2012
, “
The Benefits of Duffing-Type Nonlinearities and Electrical Optimisation of a Mono-Stable Energy Harvester Under White Gaussian Excitations
,”
J. Sound Vib.
,
331
(
20
), pp.
4504
4517
.10.1016/j.jsv.2012.04.035
19.
Adhikari
,
S.
,
Friswell
,
M.
,
Litak
,
G.
, and
Khodaparast
,
H. H.
,
2016
, “
Design and Analysis of Vibration Energy Harvesters Based on Peak Response Statistics
,”
Smart Mater. Struct.
,
25
(
6
), p.
065009
.10.1088/0964-1726/25/6/065009
20.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
21.
He
,
Q.
, and
Daqaq
,
M. F.
,
2016
, “
Electric Load Optimization of a Nonlinear Mono-Stable Duffing Harvester Excited by White Noise
,”
Meccanica
,
51
(
5
), pp.
1027
1039
.10.1007/s11012-015-0289-7
22.
Ali
,
S.
,
Adhikari
,
S.
,
Friswell
,
M.
, and
Narayanan
,
S.
,
2011
, “
The Analysis of Piezomagnetoelastic Energy Harvesters Under Broadband Random Excitations
,”
J. Appl. Phys.
,
109
(
7
), p.
074904
.10.1063/1.3560523
23.
Kougioumtzoglou
,
I.
, and
Spanos
,
P.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.10.1016/j.probengmech.2011.08.022
24.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
J. Eng. Mech.
,
140
(
9
), p.
04014064
.10.1061/(ASCE)EM.1943-7889.0000780
25.
Kougioumtzoglou
,
I. A.
,
Di Matteo
,
A.
,
Spanos
,
P. D.
,
Pirrotta
,
A.
, and
Di Paola
,
M.
,
2015
, “
An Efficient Wiener Path Integral Technique Formulation for Stochastic Response Determination of Nonlinear MDOF Systems
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101005
.10.1115/1.4030890
26.
Kougioumtzoglou
,
I. A.
,
2017
, “
A Wiener Path Integral Solution Treatment and Effective Material Properties of a Class of One-Dimensional Stochastic Mechanics Problems
,”
J. Eng. Mech.
,
143
(
6
), p.
04017014
.10.1061/(ASCE)EM.1943-7889.0001211
27.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements Via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp.
127
135
.10.1016/j.probengmech.2014.07.001
28.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.10.1103/PhysRevLett.102.080601
29.
Nguyen
,
S. D.
, and
Halvorsen
,
E.
,
2011
, “
Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1225
1227
.10.1109/JMEMS.2011.2170824
30.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.10.1007/s11071-012-0327-0
31.
Halvorsen
,
E.
,
2013
, “
Fundamental Issues in Nonlinear Wideband-Vibration Energy Harvesting
,”
Phys. Rev. E
,
87
(
4
), p.
042129
.10.1103/PhysRevE.87.042129
32.
Harne
,
R.
, and
Wang
,
K.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
33.
Joo
,
H. K.
, and
Sapsis
,
T. P.
,
2014
, “
Performance Measures for Single-Degree-of-Freedom Energy Harvesters Under Stochastic Excitation
,”
J. Sound Vib.
,
333
(
19
), pp.
4695
4710
.10.1016/j.jsv.2014.05.003
34.
Langley
,
R.
,
2014
, “
A General Mass Law for Broadband Energy Harvesting
,”
J. Sound Vib.
,
333
(
3
), pp.
927
936
.10.1016/j.jsv.2013.09.036
35.
Langley
,
R. S.
,
2015
, “
Bounds on the Vibrational Energy That Can Be Harvested From Random Base Motion
,”
J. Sound Vib.
,
339
, pp.
247
261
.10.1016/j.jsv.2014.11.012
36.
He
,
Q.
, and
Daqaq
,
M. F.
,
2014
, “
Influence of Potential Function Asymmetries on the Performance of Nonlinear Energy Harvesters Under White Noise
,”
ASME Paper No. DETC2014-34397
.10.1115/DETC2014-34397
37.
Oldham
,
K.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order
, Vol.
111
,
Elsevier
,
Amsterdam, The Netherlands
.
38.
Torczon
,
V.
,
1997
, “
On the Convergence of Pattern Search Algorithms
,”
SIAM J. Optim.
,
7
(
1
), pp.
1
25
.10.1137/S1052623493250780
39.
Lewis
,
R. M.
, and
Torczon
,
V.
,
1999
, “
Pattern Search Algorithms for Bound Constrained Minimization
,”
SIAM J. Optim.
,
9
(
4
), pp.
1082
1099
.10.1137/S1052623496300507
40.
Audet
,
C.
, and
Dennis
,
J. E.
, Jr
,
2002
, “
Analysis of Generalized Pattern Searches
,”
SIAM J. Optim.
,
13
(
3
), pp.
889
903
.10.1137/S1052623400378742
41.
Psaros
,
A. F.
,
Brudastova
,
O.
,
Malara
,
G.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Wiener Path Integral Based Response Determination of Nonlinear Systems Subject to Non-White, Non-Gaussian, and Non-Stationary Stochastic Excitation
,”
J. Sound Vib.
,
433
, pp.
314
333
.10.1016/j.jsv.2018.07.013
42.
Meimaris
,
A. T.
,
Kougioumtzoglou
,
I. A.
,
Pantelous
,
A. A.
, and
Pirrotta
,
A.
,
2019
, “
An Approximate Technique for Determining in Closed Form the Response Transition Probability Density Function of Diverse Nonlinear/Hysteretic Oscillators
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2627
2641
.10.1007/s11071-019-05152-w
43.
Psaros
,
A. F.
,
Petromichelakis
,
I.
, and
Kougioumtzoglou
,
I. A.
,
2019
, “
Wiener Path Integrals and Multi-Dimensional Global Bases for Non-Stationary Stochastic Response Determination of Structural Systems
,”
Mech. Syst. Signal Process.
,
128
, pp.
551
571
.10.1016/j.ymssp.2019.04.014
44.
Naess
,
A.
, and
Johnsen
,
J.
,
1993
, “
Response Statistics of Nonlinear, Compliant Offshore Structures by the Path Integral Solution
,”
Probab. Eng. Mech.
,
8
(
2
), pp.
91
106
.10.1016/0266-8920(93)90003-E
45.
Di Paola
,
M.
, and
Santoro
,
R.
,
2008
, “
Path Integral Solution for Non-Linear System Enforced by Poisson White Noise
,”
Probab. Eng. Mech.
,
23
(
2–3
), pp.
164
169
.10.1016/j.probengmech.2007.12.029
46.
Chaichian
,
M.
, and
Demichev
,
A.
,
2001
,
Path Integrals in Physics: Stochastic Processes and Quantum Mechanics
,
Institute of Physics Publishing
,
Bristol, UK
.
47.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
(Springer Series in Operations Research and Financial Engineering),
Springer
,
New York
.
48.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.10.1007/PL00011391
49.
Waltz
,
R. A.
,
Morales
,
J. L.
,
Nocedal
,
J.
, and
Orban
,
D.
,
2006
, “
An Interior Algorithm for Nonlinear Optimization That Combines Line Search and Trust Region Steps
,”
Math. Program.
,
107
(
3
), pp.
391
408
.10.1007/s10107-004-0560-5
50.
Kumar
,
P.
,
Narayanan
,
S.
,
Adhikari
,
S.
, and
Friswell
,
M.
,
2014
, “
Fokker–Planck Equation Analysis of Randomly Excited Nonlinear Energy Harvester
,”
J. Sound Vib.
,
333
(
7
), pp.
2040
2053
.10.1016/j.jsv.2013.11.011
51.
He
,
Q.
, and
Daqaq
,
M. F.
,
2015
, “
New Insights Into Utilizing Bistability for Energy Harvesting Under White Noise
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021009
.10.1115/1.4029008
You do not currently have access to this content.