Abstract

The aim of this work is to propose an indicator, based on the info-gap approach, which assesses the robustness of the dynamic response of the model of a structure to lack of knowledge in the associated eigensolutions. The info-gap uncertainty model for the eigensolutions is constructed mode by mode based on a set of experimentally identified eigensolutions obtained from tests on a set of nominally identical structures. A robustness analysis is then performed, which provides a useful bound to the maximum response levels that are consistent with the defined uncertainty, thus allowing to extrapolate to a population of untested structures. The proposed methodology is validated experimentally on a simple structure composed of two plates clamped together on one side. Uncertainty is introduced by adding lumped masses at random locations. A subset of these test results is used to construct the info-gap model of the eigenproperties and the remaining data are used to confirm that the robustness curve usefully bounds the observed maximum responses.

References

References
1.
Göhler
,
M.
,
Eifler
,
S.
, and
Howard
,
T.
,
2016
, “
Robustness Metrics: Consolidating the Multiple Approaches to Quantify Robustness
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111407
.10.1115/1.4034112
2.
Zhang
,
M. Q.
,
Beer
,
M.
,
Koh
,
C. G.
, and
Jensen
,
H. A.
,
2016
, “
Nuanced Robustness Analysis With Limited Information
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
2
(
3
), p.
B4015001
.10.1061/AJRUA6.0000821
3.
Ben-Haim
,
Y.
,
2006
,
Information-Gap Theory: Decisions Under Severe Uncertainty
, 2nd ed.,
Academic Press
,
London
.
4.
Knight
,
F.
,
1921
,
Risk, Uncertainty and Profit
,
Houghton Mifflin Co
., Boston, MA.
5.
Roy
,
B.
,
2010
, “
Robustness in Operational Research and Decision Aiding: A Multi-Faceted issue
,”
Eur. J. Oper. Res.
,
200
(
3
), pp.
629
638
.10.1016/j.ejor.2008.12.036
6.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
,
2002
, “
Error and Uncertainty in Modeling and Simulation
,”
Reliab. Eng. Syst. Saf.
,
75
(
3
), pp.
333
357
.10.1016/S0951-8320(01)00120-X
7.
Klir
,
G.
,
2004
, “
Generalized Information Theory: Aims, Results and Open Problems
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
21
38
.10.1016/j.ress.2004.03.003
8.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.10.1016/j.strusafe.2008.06.020
9.
Ghanem
,
R.
, and
Spanos
,
P.
,
1991
,
Stochastic Finite Element: A Spectral Approach
,
Springer-Verlag
, New York.
10.
Soize
,
C.
,
2000
, “
A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
,
15
(
3
), pp.
277
294
.10.1016/S0266-8920(99)00028-4
11.
Schuëller
,
G.
,
2007
, “
On the Treatment of Uncertainties in Structural Mechanics and Analysis
,”
Comput. Struct.
,
85
(
5–6
), pp.
235
243
.10.1016/j.compstruc.2006.10.009
12.
Adhikari
,
S.
,
2008
, “
Wishart Random Matrices in Probabilistic Structural Mechanics
,”
J. Eng. Mech.
,
134
(
12
), pp.
1029
1044
.10.1061/(ASCE)0733-9399(2008)134:12(1029)
13.
Dessombz
,
O.
,
Thouverez
,
F.
,
Laîné
,
J.-P.
, and
Jézéquel
,
L.
,
2001
, “
Analysis of Mechanical Systems Using Interval Computations Applied to Finite Element Methods
,”
J. Sound Vib.
,
239
(
5
), pp.
949
968
.10.1006/jsvi.2000.3191
14.
Moens
,
D.
, and
Hanss
,
M.
,
2011
, “
Non-Probabilistic Finite Element Analysis for Parametric Uncertainty Treatment in Applied Mechanics: Recent Advances
,”
Finite Elem. Anal. Des.
,
47
(
1
), pp.
4
16
.10.1016/j.finel.2010.07.010
15.
Dempster
,
A.
,
1968
, “
Upper and Lower Probabilities Generated by a Random Closed Interval
,”
Ann. Math. Stat.
,
39
(
3
), pp.
957
966
.10.1214/aoms/1177698328
16.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
, Vol.
1
,
Princeton University Press
,
Princeton, NJ
.
17.
Jaboviste
,
K.
,
Sadoulet-Reboul
,
E.
,
Peyret
,
N.
,
Arnould
,
C.
,
Collard
,
E.
, and
Chevallier
,
G.
,
2019
, “
On the Compromise Between Performance and Robustness for Viscoelastic Damped Structures
,”
Mechanical Systems and Signal Processing
,
119
, pp.
65
80
.10.1016/j.ymssp.2018.08.061
18.
Adhikari
,
S.
, and
Sarkar
,
A.
,
2009
, “
Uncertainty in Structural Dynamics: Experimental Validation of a Wishart Random Matrix Model
,”
J. Sound Vib.
,
323
(
3–5
), pp.
802
825
.10.1016/j.jsv.2009.01.030
19.
Adhikari
,
S.
,
Friswell
,
M.
,
Lonkar
,
K.
, and
Sarkar
,
A.
,
2009
, “
Experimental Case Studies for Uncertainty Quantification in Structural Dynamics
,”
Probab. Eng. Mech.
,
24
(
4
), pp.
473
492
.10.1016/j.probengmech.2009.01.005
20.
Friswell
,
M.
,
Coote
,
J.
,
Terrell
,
M.
,
Adhikari
,
S.
,
Fonseca
,
J.
, and
Lieven
,
N.
,
2005
, “
Experimental Data for Uncertainty Quantification
,”
Proceedings of the 23rd International Modal Analysis Conference (IMAC-XXIII)
, Orlando, FL.
21.
Atamturktur
,
S.
,
Liu
,
Z.
,
Cogan
,
S.
, and
Juang
,
H.
,
2015
, “
Calibration of Imprecise and Inaccurate Numerical Models Considering Fidelity and Robustness: A Multi-Objective Optimization based Approach
,”
Struct. Multidiscip. Optim.
,
51
(
3
), pp.
659
671
.10.1007/s00158-014-1159-y
22.
Stevens
,
G.
,
Van Buren
,
K.
,
Wheeler
,
E.
, and
Atamturktur
,
S.
,
2015
, “
Evaluating the Fidelity and Robustness of Calibrated Numerical Model Predictions
,”
Eng. Comput.
,
32
(
3
), pp.
621
642
.10.1108/EC-09-2013-0217
23.
Hot
,
A.
,
Weisser
,
T.
, and
Cogan
,
S.
,
2017
, “
An Info-Gap Application to Robust Design of a Prestressed Space Structure Under Epistemic Uncertainties
,”
Mech. Syst. Signal Process.
,
91
, pp.
1
9
.10.1016/j.ymssp.2016.12.019
24.
Pichler
,
L.
,
Pradlwarter
,
H. J.
, and
Schuëller
,
G. I.
,
2008
, “
A Mode-Based Meta-Model for the Frequency Response Functions of Uncertain Structural Systems
,”
Comput. Struct.
, 87(5–6), pp. 332–341.10.1016/j.compstruc.2008.12.013
25.
Guillaume
,
P.
,
Verboven
,
P.
,
Vanlanduit
,
S.
,
der Auweraer
,
H. V.
, and
Peeters
,
B.
,
2003
, “
A Poly-Reference Implementation of the Least-Squares Complex Frequency-Domain Estimator
,”
Proceedings of the IMAC XXI
.
26.
Balmes
,
E.
,
1997
, “
New Results on the Identification of Normal Modes From Experimental Complex Modes
,”
Mech. Syst. Signal Process.
,
11
(
2
), pp.
229
243
.10.1006/mssp.1996.0058
27.
Allemang
,
R.
,
2003
, “
The Modal Assurance Criterion: Twenty Years of Use and Abuse
,”
J. Sound Vib.
,
37
(
8
), pp.
14
23
.http://sdrl.uc.edu/sdrl/referenceinfo/documents/papers/IMAC2002-MAC20Years.pdf
28.
Ben-Haim
,
Y.
,
2004
, “
Uncertainty, Probability and Information-Gaps
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
249
266
.10.1016/j.ress.2004.03.015
You do not currently have access to this content.