Abstract

A powerful new idea in the computational representation of structures is that of the digital twin. The concept of the digital twin emerged and developed over the last decade, and has been identified by many industries as a highly desired technology. The current situation is that individual companies often have their own definitions of a digital twin, and no clear consensus has emerged. In particular, there is no current mathematical formulation of a digital twin. A companion paper to the current one will attempt to present the essential components of the desired formulation. One of those components is identified as a rigorous representation theory of models; most importantly, governing how they are verified and validated, and how validation information can be transferred between models. Unlike its companion, which does not attempt detailed specification of any twin components, this paper will attempt to outline a rigorous representation theory of models, based on the introduction of two new concepts: mirrors and virtualizations. The paper is not intended as a passive wish list; it is intended as a rallying call. The new theory will require the active participation of researchers across a number of domains including: pure and applied mathematics, physics, computer science, and engineering. The paper outlines the main objects of the theory and gives examples of the sort of theorems and hypotheses that might be proved in the new framework.

References

References
1.
Tuegel
,
E.
,
Ingraffea
,
A.
,
Eason
,
T.
, and
Spottswood
,
S.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, pp.
1
14
.10.1155/2011/154798
2.
Datta
,
S.
,
2017
, “
Emergence of Digital Twins—Is This the March of Reason?
,”
J. Innovation Manage.
,
5
(
3
), pp.
14
33
.10.24840/2183-0606_005.003_0003
3.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
,
Digital-Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
,
Springer
, New York, pp.
85
113
.
4.
Wagg
,
D.
,
Worden
,
K.
,
Barthorpe
,
R.
, and
Gardner
,
P.
,
2020
, “
Digital Twins: State-of-the-Art and Future Directions for Modelling and Simulation in Engineering Dynamics Applications
,”
ASCE-ASME
J. Risk Uncertainty Eng. Syst., Part B (accepted).10.1115/1.4046739
5.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.10.1016/j.cirp.2018.04.055
6.
Li
,
C.
, and
Mahadevan
,
S.
,
2016
, “
Role of Calibration, Validation and Relevance in Multi-Level Uncertainty Integration
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
32
43
.10.1016/j.ress.2015.11.013
7.
Nagel
,
J.
, and
Sudret
,
B.
,
2016
, “
A Unified Framework for Multilevel Uncertainty Quantification in Bayesian Inverse Problems
,”
Probab. Eng. Mech.
,
43
, pp.
68
84
.10.1016/j.probengmech.2015.09.007
8.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
9.
Bishop
,
C.
,
2007
,
Pattern Recognition and Machine Learning
,
Springer
, New York.
10.
Cherkassky
,
V.
, and
Mulier
,
F.
,
1998
,
Learning From Data: Concepts, Theory and Methods
,
Wiley
, Hoboken, NJ.
11.
Worden
,
K.
,
Barthorpe
,
R.
,
Cross
,
E.
,
Dervilis
,
N.
,
Holmes
,
G.
,
Manson
,
G.
, and
Rogers
,
T.
,
2018
, “
On Evolutionary System Identification With Applications to Nonlinear Benchmarks
,”
Mech. Syst. Signal Process.
,
112
, pp.
194
232
.10.1016/j.ymssp.2018.04.001
12.
Worden
,
K.
, and
Hensman
,
J.
,
2012
, “
Parameter Estimation and Model Selection for a Class of Hysteretic Systems Using Bayesian Inference
,”
Mech. Syst. Signal Process.
,
32
, pp.
153
169
.10.1016/j.ymssp.2012.03.019
13.
Abdessalem
,
A.
,
Dervilis
,
N.
,
Wagg
,
D.
, and
Worden
,
K.
,
2018
, “
Model Selection and Parameter Estimation in Structural Dynamics Using Approximate Bayesian Computation
,”
Mech. Syst. Signal Process.
,
99
, pp.
306
325
.10.1016/j.ymssp.2017.06.017
14.
Rasmussen
,
C.
, and
Williams
,
C.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
, Cambridge, MA.
15.
Bi
,
S.
,
Prabhu
,
S.
,
Cogan
,
S.
, and
Atamturktur
,
S.
,
2017
, “
Uncertainty Quantification Metrics With Varying Statistical Information in Model Calibration and Validation
,”
AIAA J.
,
55
(
10
), pp.
3570
3583
.10.2514/1.J055733
16.
Worden
,
K.
,
2002
, “
Some Thoughts on Model Validation for Nonlinear Systems
,”
Proceedings of Third International Conference on Identification in Engineering Systems
, Swansea, UK, Apr. 15–16, pp.
142
154
.
17.
Gardner
,
P.
,
Lord
,
C.
, and
Barthorpe
,
R. J.
,
2019
, “
A Unifying Framework for Probabilistic Validation Metrics
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
4
(
3
), p. 031005.10.1115/1.4045296
18.
Turing
,
A.
,
1950
, “
Computing Machinery and Intelligence
,”
Mind
,
LIX
(
236
), pp.
433
460
.10.1093/mind/LIX.236.433
19.
Grieves
,
M.
,
2005
,
Product Lifecycle Management: Driving the Next Generation of Lean Thinking
,
McGraw-Hill Professional
, New York.
20.
Torrey
,
L.
, and
Shavlik
,
J.
,
2009
, “
Transfer Learning
,”
Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques: Algorithms, Methods, and Techniques
,
E.
Soria
,
J. D.
Martín-Guerrero
,
M.
Martinez
,
R.
Magdalena
, and
A. J.
Serrano
, eds.,
IGI Global
, Hershey, PA, pp.
242
264
.
21.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.10.1109/TKDE.2009.191
22.
Weiss
,
K.
,
Khoshgoftaar
,
T. M.
, and
Wang
,
D.
,
2016
, “
A Survey of Transfer Learning
,”
J. Big Data
,
3
(
1
), pp.
1
40
.10.1186/s40537-016-0043-6
23.
Ladeveze
,
P.
, and
Leguillon
,
D.
,
1983
, “
Error Estimate Procedure in the Finite Element Method and Applications
,”
SIAM J. Numer. Anal.
,
20
(
3
), pp.
485
509
.10.1137/0720033
24.
Ainsworth
,
M.
, and
Tinsley
,
J.
,
1997
, “
A Posteriori Error Estimation in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
142
(
1–2
), pp.
1
88
.10.1016/S0045-7825(96)01107-3
25.
Gawthrop
,
P. J.
,
Wallace
,
M. I.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2007
, “
Robust Real-Time Substructuring Techniques for Lightly-Damped Systems
,”
Struct. Control Health Monit.
,
14
(
4
), pp.
591
600
.10.1002/stc.174
26.
Sun
,
S.
,
Shi
,
H.
, and
Wu
,
Y.
,
2015
, “
A Survey of Multi-Source Domain Adaptation
,”
Inf. Fusion
,
24
, pp.
84
92
.10.1016/j.inffus.2014.12.003
27.
Farrar
,
C.
, and
Worden
,
K.
,
2012
,
Structural Health Monitoring: A Machine Learning Perspective
,
Wiley
, Chichester, UK.
28.
Barthorpe
,
R. J.
,
2010
, “
On Model- and Data-Based Approaches to Structural Health Monitoring
,”
Ph.D. thesis
,
University of Sheffield
, Sheffield, UK.http://etheses.whiterose.ac.uk/1175/
29.
Gardner
,
P.
,
2019
, “
On Novel Approaches to Model-Based Structural Health Monitoring
,” Ph.D. thesis,
University of Sheffield
, Sheffield, UK.http://etheses.whiterose.ac.uk/23376/
30.
Cappell
,
S.
,
Ranicki
,
A.
, and
Rosenberg
,
J.
,
2000
,
Surveys on Surgery Theory
, Vol.
1
,
Princeton University Press
, Princeton, NJ.
You do not currently have access to this content.