Abstract

This paper presents a review of the state of the art for digital twins in the application domain of engineering dynamics. The focus on applications in dynamics is because: (i) they offer some of the most challenging aspects of creating an effective digital twin, and (ii) they are relevant to important industrial applications such as energy generation and transport systems. The history of the digital twin is discussed first, along with a review of the associated literature; the process of synthesizing a digital twin is then considered, including definition of the aims and objectives of the digital twin. An example of the asset management phase for a wind turbine is included in order to demonstrate how the synthesis process might be applied in practice. In order to illustrate modeling issues arising in the construction of a digital twin, a detailed case study is presented, based on a physical twin, which is a small-scale three-story structure. This case study shows the progression toward a digital twin highlighting key processes including system identification, data-augmented modeling, and verification and validation. Finally, a discussion of some open research problems and technological challenges is given, including workflow, joints, uncertainty management, and the quantification of trust. In a companion paper, as part of this special issue, a mathematical framework for digital twin applications is developed, and together the authors believe this represents a firm framework for developing digital twin applications in the area of engineering dynamics.

References

References
1.
Gilchrist
,
A.
,
2016
,
Industry 4.0: The Industrial Internet of Things
,
Apress
, New York.
2.
Chen
,
M.
,
Mao
,
S.
, and
Liu
,
Y.
,
2014
, “
Big Data: A Survey
,”
Mobile Networks Appl.
,
19
(
2
), pp.
171
209
.10.1007/s11036-013-0489-0
3.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, pp.
1
14
.10.1155/2011/154798
4.
Langley
,
A.
,
1995
, “
Between ‘Paralysis by Analysis' and ‘Extinction by Instinct'
,”
Sloan Manage. Rev.
,
36
, p.
63
.https://sloanreview.mit.edu/article/between-paralysis-by-analysis-and-extinction-by-instinct/
5.
Worden
,
K.
,
Staszewski
,
W. J.
, and
Hensman
,
J. J.
,
2011
, “
Natural Computing for Mechanical Systems Research: A Tutorial Overview
,”
Mech. Syst. Signal Process.
,
25
(
1
), pp.
4
111
.10.1016/j.ymssp.2010.07.013
6.
Rosen
,
R.
,
von Wichert
,
G.
,
Lo
,
G.
, and
Bettenhausen
,
K. D.
,
2015
, “
About the Importance of Autonomy and Digital Twins for the Future of Manufacturing
,”
IFAC-PapersOnLine
,
48
(
3
), pp.
567
572
.10.1016/j.ifacol.2015.06.141
7.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “
Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
,”
Transdisciplinary Perspectives on Complex Systems
,
Springer
, Berlin, pp.
85
113
.
8.
Nicolai
,
T.
,
Resatsch
,
F.
, and
Michelis
,
D.
,
2005
, “
The Web of Augmented Physical Objects
,”
International Conference on Mobile Business
(
ICMB 2005
), Sydney, Australia, July 11–13, pp.
340
346
.10.1109/ICMB.2005.105
9.
Morel
,
T.
,
Keribar
,
R.
, and
Leonard
,
A.
,
2003
, “‘
Virtual Engine/Powertrain/Vehicle' Simulation Tool Solves Complex Interacting System Issues
,”
SAE
Paper No. 2003-01-0372
.10.4271/2003-01-0372
10.
Lee
,
J.
,
Ni
,
J.
,
Djurdjanovic
,
D.
,
Qiu
,
H.
, and
Liao
,
H.
,
2006
, “
Intelligent Prognostics Tools and E-Maintenance
,”
Comput. Ind.
,
57
(
6
), pp.
476
489
.10.1016/j.compind.2006.02.014
11.
Ríos
,
J.
,
Hernández
,
J. C.
,
Oliva
,
M.
, and
Mas
,
F.
,
2015
, “
Product Avatar as Digital Counterpart of a Physical Individual Product: Literature Review and Implications in an Aircraft
,”
Proceedings of the 22nd ISPE Inc. International Conference on Concurrent Engineering, Delft
, The Netherlands, July 20–23, pp. 657–666.https://www.researchgate.net/publication/280234034_Product_Avatar_as_Digital_Counterpart_of_a_Physical_Individual_Product_Literature_Review_and_Implications_in_an_Aircraft
12.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann.
,
66
(
1
), pp.
141
144
.10.1016/j.cirp.2017.04.040
13.
Boschert
,
S.
, and
Rosen
,
R.
,
2016
, “
Digital Twin—The Simulation Aspect
,”
Mechatronic Futures
,
Springer
, New York, pp.
59
74
.
14.
Lee
,
J.
,
Lapira
,
E.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2013
, “
Recent Advances and Trends in Predictive Manufacturing Systems in Big Data Environment
,”
Manuf. Lett.
,
1
(
1
), pp.
38
41
.10.1016/j.mfglet.2013.09.005
15.
Schroeder
,
G. N.
,
Steinmetz
,
C.
,
Pereira
,
C. E.
, and
Espindola
,
D. B.
,
2016
, “
Digital Twin Data Modeling With automation ML and a Communication Methodology for Data Exchange
,”
IFAC-PapersOnLine
,
49
(
30
), pp.
12
17
.10.1016/j.ifacol.2016.11.115
16.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
.10.1007/s00170-017-0233-1
17.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C.-Y.
, and
Nee
,
A.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.10.1080/00207543.2018.1443229
18.
Banerjee
,
A.
,
Dalal
,
R.
, and
Joshi
,
K. P.
,
2017
, “
Generating Digital Twin Models Using Knowledge Graphs for Industrial Production Lines
,”
Workshop on Industrial Knowledge Graphs, Co-located With the Ninth International ACM Web Science Conference
, Troy, NY, June 25, pp. 1–6
.https://www.researchgate.net/publication/319356723_Generating_Digital_Twin_models_using_Knowledge_Graphs_for_Industrial_Production_Lines
19.
Krueger
,
C.
, and
Clements
,
P.
,
2017
, “
Enterprise Feature Ontology for Feature-Based Product Line Engineering and Operations
,”
Proceedings of the 21st International Systems and Software Product Line Conference
, Sevilla, Spain, Sept. 25–29, pp.
227
236
.
20.
Ciavotta
,
M.
,
Alge
,
M.
,
Menato
,
S.
,
Rovere
,
D.
, and
Pedrazzoli
,
P.
,
2017
, “
A Microservice-Based Middleware for the Digital Factory
,”
Procedia Manuf.
,
11
, pp.
931
938
.10.1016/j.promfg.2017.07.197
21.
Yun
,
S.
,
Park
,
J.-H.
, and
Kim
,
W.-T.
,
2017
, “
Data-Centric Middleware Based Digital Twin Platform for Dependable Cyber-Physical Systems
,” Ninth International Conference on Ubiquitous and Future Networks (
ICUFN
), Milan, Italy, July 4–7, pp.
922
926
.10.1109/ICUFN.2017.7993933
22.
Heber
,
D.
, and
Groll
,
M.
,
2017
, “
Towards a Digital Twin: How the Blockchain Can Foster E/E-Traceability in Consideration of Model-Based Systems Engineering
,” Proceedings of the 21st International Conference on Engineering Design (
ICED 17
), Vancouver, Canada, Aug. 21–25, pp.
21
25
.https://www.designsociety.org/publication/39637/Towards+a+digital+twin%3A+How+the+blockchain+can+foster+E%2FE-traceability+in+consideration+of+model-based+systems+engineering
23.
Uhlemann
,
T. H.-J.
,
Schock
,
C.
,
Lehmann
,
C.
,
Freiberger
,
S.
, and
Steinhilper
,
R.
,
2017
, “
The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems
,”
Procedia Manuf.
,
9
, pp.
113
120
.10.1016/j.promfg.2017.04.043
24.
Miller
,
A. M.
,
Alvarez
,
R.
, and
Hartman
,
N.
,
2018
, “
Towards an Extended Model-Based Definition for the Digital Twin
,”
Comput.-Aided Des. Appl.
,
15
(
6
), pp.
880
891
.10.1080/16864360.2018.1462569
25.
Sierla
,
S.
,
Kyrki
,
V.
,
Aarnio
,
P.
, and
Vyatkin
,
V.
,
2018
, “
Automatic Assembly Planning Based on Digital Product Descriptions
,”
Comput. Ind.
,
97
, pp.
34
46
.10.1016/j.compind.2018.01.013
26.
Knapp
,
G.
,
Mukherjee
,
T.
,
Zuback
,
J.
,
Wei
,
H.
,
Palmer
,
T.
,
De
,
A.
, and
DebRoy
,
T.
,
2017
, “
Building Blocks for a Digital Twin of Additive Manufacturing
,”
Acta Mater.
,
135
, pp.
390
399
.10.1016/j.actamat.2017.06.039
27.
DebRoy
,
T.
,
Zhang
,
W.
,
Turner
,
J.
, and
Babu
,
S.
,
2017
, “
Building Digital Twins of 3D Printing Machines
,”
Scr. Mater.
,
135
, pp.
119
124
.10.1016/j.scriptamat.2016.12.005
28.
Cerrone
,
A.
,
Hochhalter
,
J.
,
Heber
,
G.
, and
Ingraffea
,
A.
,
2014
, “
On the Effects of Modeling As-Manufactured Geometry: Toward Digital Twin
,”
Int. J. Aerosp. Eng.
,
2014
, pp.
1
10
.10.1155/2014/439278
29.
Lee
,
J.
, and
Lapira
,
E.
,
2013
, “
Predictive Factories: The Next Transformation
,”
Manuf. Leadership J.
,
20
(
1
), pp.
13
24
.10.3182/20130522-3-BR-4036.00107
30.
Stark
,
R.
,
Kind
,
S.
, and
Neumeyer
,
S.
,
2017
, “
Innovations in Digital Modelling for Next Generation Manufacturing System Design
,”
CIRP Ann.
,
66
(
1
), pp.
169
172
.10.1016/j.cirp.2017.04.045
31.
Brenner
,
B.
, and
Hummel
,
V.
,
2017
, “
Digital Twin as Enabler for an Innovative Digital Shopfloor Management System in the ESB Logistics Learning Factory at Reutlingen-University
,”
Procedia Manuf.
,
9
, pp.
198
205
.10.1016/j.promfg.2017.04.039
32.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.
,
66
(
1
), pp.
137
140
.10.1016/j.cirp.2017.04.038
33.
Uhlemann
,
T. H.-J.
,
Lehmann
,
C.
, and
Steinhilper
,
R.
,
2017
, “
The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0
,”
Procedia CIRP
,
61
, pp.
335
340
.10.1016/j.procir.2016.11.152
34.
Datta
,
S. P. A.
,
2017
, “
Emergence of Digital Twins—is This the March of Reason?
,”
J. Innovation Manage.
,
5
(
3
), pp.
14
33
.10.24840/2183-0606_005.003_0003
35.
Bottani
,
E.
,
Cammardella
,
A.
,
Murino
,
T.
, and
Vespoli
,
S.
,
2017
, “
From the Cyber-Physical System to the Digital Twin: The Process Development for Behaviour Modelling of a Cyber Guided Vehicle in M2M Logic
,”
XXII Summer School ‘Francesco Turco'–Industrial Systems Engineering
, Palermo, Italy, Sept., pp.
1
7
.https://www.researchgate.net/publication/334113041_From_the_Cyber-Physical_System_to_the_Digital_Twin_the_process_development_for_behaviour_modelling_of_a_Cyber_Guided_Vehicle_in_M2M_logic
36.
Alam
,
K. M.
, and
El Saddik
,
A.
,
2017
, “
C2 PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems
,”
IEEE Access
,
5
, pp.
2050
2062
.10.1109/ACCESS.2017.2657006
37.
Qi
,
Q.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
.10.1109/ACCESS.2018.2793265
38.
Boschert
,
S.
,
Heinrich
,
C.
, and
Rosen
,
R.
,
2018
, “
Next Generation Digital Twin
,”
Proceedings of TMCE
, Las Palmas de Gran Canaria, Spain, May 7–11, pp.
209
218
.https://www.researchgate.net/publication/325119950_Next_Generation_Digital_Twin
39.
Nikolakis
,
N.
,
Alexopoulos
,
K.
,
Xanthakis
,
E.
, and
Chryssolouris
,
G.
,
2019
, “
The Digital Twin Implementation for Linking the Virtual Representation of Human-Based Production Tasks to Their Physical Counterpart in the Factory-Floor
,”
Int. J. Comput. Integr. Manuf.
,
32
(
1
), pp.
1
12
.10.1080/0951192X.2018.1529430
40.
Tuegel
,
E.
,
2012
, “
The Airframe Digital Twin: Some Challenges to Realization
,”
AIAA
Paper No. 2012-1812.10.2514/6.2012-1812
41.
Seshadri
,
B. R.
, and
Krishnamurthy
,
T.
,
2017
, “
Structural Health Management of Damaged Aircraft Structures Using Digital Twin Concept
,”
AIAA
Paper No. 2017-1675.10.2514/6.2017-1675
42.
Li
,
C.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
.10.2514/1.J055201
43.
Sharma
,
P.
,
Hamedifar
,
H.
,
Brown
,
A.
, and
Green
,
R.
,
2017
, “
The Dawn of the New Age of the Industrial Internet and How It Can Radically Transform the Offshore Oil and Gas Industry
,”
Offshore Technology Conference, Houston, TX, May 1–4, Paper No.
OTC-27638-MS
.10.4043/27638-MS
44.
Sivalingam
,
K.
,
Sepulveda
,
M.
,
Spring
,
M.
, and
Davies
,
P.
,
2018
, “
A Review and Methodology Development for Remaining Useful Life Prediction of Offshore Fixed and Floating Wind Turbine Power Converter With Digital Twin Technology Perspective
,”
Second International Conference on Green Energy and Applications
(
ICGEA
), Singapore, Mar. 24–26, pp.
197
204
.10.1109/ICGEA.2018.8356292
45.
Tygesen
,
U. T.
,
Jepsen
,
M. S.
,
Vestermark
,
J.
,
Dollerup
,
N.
, and
Pedersen
,
A.
,
2018
, “
The True Digital Twin Concept for Fatigue Re-Assessment of Marine Structures
,”
ASME
Paper No. OMAE2018-77915.10.1115/OMAE2018-77915
46.
Glaessgen
,
E. H.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and US Air Force Vehicles
,”
53rd Structures, Structural Dynamics, and Materials Conference: Special Session on the Digital Twin
, Honolulu, HI, Apr. 23–26, p.
1812
. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120008178.pdf
47.
Iglesias
,
D.
,
Bunting
,
P.
,
Esquembri
,
S.
,
Hollocombe
,
J.
,
Silburn
,
S.
,
Vitton-Mea
,
L.
,
Balboa
,
I.
,
Huber
,
A.
,
Matthews
,
G. F.
,
Riccardo
,
V.
,
Rimini
,
F.
, and
Valcarcel
,
D.
,
2017
, “
Digital Twin Applications for the Jet Divertor
,”
Fusion Eng. Des.
,
125
, pp.
71
76
.10.1016/j.fusengdes.2017.10.012
48.
Grieves
,
M.
,
2005
,
Product Lifecycle Management: Driving the Next Generation of Lean Thinking
,
McGraw-Hill Professional
, New York.
49.
Hankel
,
M.
, and
Rexroth
,
B.
,
2015
, “
The Reference Architectural Model Industrie 4.0 (RAMI 4.0)
,” Zvei, Frankfurt, Germany.
50.
Batterman
,
R.
,
2013
, “
The Tyranny of Scales
,”
The Oxford Handbook of Philosophy of Physics
,
R.
Batterman
, eds.,
Oxford University Press
,
New York
, pp.
255
286
.
51.
Ewins
,
D. J.
,
2000
,
Modal Testing
,
Research Studies Press
, Philadelphia, PA.
52.
Au
,
S.-K.
,
2017
,
Operational Modal Analysis: Modeling, Bayesian Inference, Uncertainty Laws
,
Springer
, New York, p.
1812
.
53.
Worden
,
K.
,
Wong
,
C. X.
,
Parlitz
,
U.
,
Hornstein
,
A.
,
Engster
,
D.
,
Tjahjowidodo
,
T.
,
Al-Bender
,
F.
,
Rizos
,
D. D.
, and
Fassois
,
S. D.
,
2007
, “
Identification of Pre-Sliding and Sliding Friction Dynamics: Grey Box and Black Box Models
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
514
534
.10.1016/j.ymssp.2005.09.004
54.
Worden
,
K.
,
Barthorpe
,
R. J.
,
Cross
,
E. J.
,
Dervilis
,
N.
,
Holmes
,
G. R.
,
Manson
,
G.
, and
Rogers
,
T. J.
,
2018
, “
On Evolutionary System Identification With Applications to Nonlinear Benchmarks
,”
Mech. Syst. Signal Process.
,
112
, pp.
194
232
.10.1016/j.ymssp.2018.04.001
55.
Friswell
,
M.
, and
Mottershead
,
J. E.
,
1995
,
Finite Element Model Updating in Structural Dynamics
, Vol.
38
,
Springer Science & Business Media
, New York.
56.
Worden
,
K.
, and
Green
,
P. L.
,
2014
, “
A Machine Learning Approach to Nonlinear Modal Analysis
,”
Dynamics of Civil Structures
, Vol.
4
,
Springer
, New York, pp.
521
528
.
57.
Verner
,
I.
,
Cuperman
,
D.
,
Fang
,
A.
,
Reitman
,
M.
,
Romm
,
T.
, and
Balikin
,
G.
,
2018
, “
Robot Online Learning Through Digital Twin Experiments: A Weightlifting Project
,”
Online Engineering & Internet of Things
,
Springer
, New York, pp.
307
314
.
58.
Tygesen
,
U.
,
Worden
,
K.
,
Rogers
,
T.
,
Manson
,
G.
, and
Cross
,
E.
,
2019
, “
State-of-the-Art and Future Directions for Predictive Modelling of Offshore Structure Dynamics Using Machine Learning
,”
Dynamics of Civil Structures
, Vol.
2
,
Springer
, New York, pp.
223
233
.
59.
AIAA
,
1998
, “
AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (G-077-1998)
,” American Institute of Aeronautics and Astronautics, Reston, VA, Report No. G-077-1998.
60.
Schwer
,
L.
,
2006
, “
ASME V&V 10 Guide for Verification and Validation in Computational Solid Mechanics
,” American Society of Mechanical Engineers, New York, Report No. PTC 60 / V&V 10.
61.
Schwer
,
L.
,
2009
, “
ASME V&V 20 Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers, New York, Report No. V&V
20
2009
.
62.
Lau
,
K.-K.
,
Taweel
,
F. M.
, and
Tran
,
C. M.
,
2011
, “
The w Model for Component-Based Software Development
,”
37th EUROMICRO Conference on Software Engineering and Advanced Applications
, Oulu, Finland, Aug. 30–Sept. 2, pp.
47
50
. 10.1109/SEAA.2011.17
63.
Khan
,
A. I.
, and
Khan
,
U.
,
2012
, “
An Improved Model for Component Based Software Development
,”
Software Eng.
,
2
(
4
), pp.
138
146
.10.5923/j.se.20120204.07
64.
Tiwari
,
S.
,
Bajpai
,
S.
, and
Arshad
,
M.
,
2014
, “
Modified w Model for Handheld Application Development
,”
Int. J. Eng. Tech. Res.
,
2
(
12
), pp.
2321
0869
.
65.
Faustmann
,
G.
,
1996
, “
Workflow Management and Causality Trees
,”
Proceedings of the Second International Conference on the Design of Cooperative Systems
, Juan-les-Pins, France, June
12
14
.https://www.researchgate.net/publication/2283171_Workflow_Management_And_Causality_Trees
66.
van Der Aalst
,
W. M.
,
Ter Hofstede
,
A. H.
,
Kiepuszewski
,
B.
, and
Barros
,
A. P.
,
2003
, “
Workflow Patterns
,”
Distrib. Parallel Databases
,
14
(
1
), pp.
5
51
.10.1023/A:1022883727209
67.
Van Der Aalst
,
W.
, and
Van Hee
,
K. M.
,
2004
,
Workflow Management: Models, Methods, and Systems
,
MIT Press
, Cambridge, MA.
68.
Bowers
,
S.
, and
Ludäscher
,
B.
,
2004
, “
An Ontology-Driven Framework for Data Transformation in Scientific Workflows
,”
International Workshop on Data Integration in the Life Sciences
, Leipzig, Germany, Mar.,
Springer
, Berlin, pp.
1
16
.
69.
Rozinat
,
A.
,
Wynn
,
M. T.
,
van der Aalst
,
W. M.
,
ter Hofstede
,
A. H.
, and
Fidge
,
C. J.
,
2009
, “
Workflow Simulation for Operational Decision Support
,”
Data Knowl. Eng.
,
68
(
9
), pp.
834
850
.10.1016/j.datak.2009.02.014
70.
Van Der Aalst
,
W. M.
,
2013
, “
Business Process Management: A Comprehensive Survey
,”
ISRN Software Eng.
,
2013
, pp.
1
37
.10.1155/2013/507984
71.
Bi
,
H. H.
, and
Zhao
,
J. L.
,
2004
, “
Applying Propositional Logic to Workflow Verification
,”
Inf. Technol. Manage.
,
5
(
3/4
), pp.
293
318
.10.1023/B:ITEM.0000031583.16306.0f
72.
Rinderle
,
S.
,
Reichert
,
M.
, and
Dadam
,
P.
,
2004
, “
Correctness Criteria for Dynamic Changes in Workflow Systems—A Survey
,”
Data Knowl. Eng.
,
50
(
1
), pp.
9
34
.10.1016/j.datak.2004.01.002
73.
Van Der Aalst
,
W. M.
,
van Hee
,
K. M.
,
ter Hofstede
,
A. H.
,
Sidorova
,
N.
,
Verbeek
,
H.
,
Voorhoeve
,
M.
, and
Wynn
,
M. T.
,
2011
, “
Soundness of Workflow Nets: Classification, Decidability, and Analysis
,”
Formal Aspects Comput.
,
23
(
3
), pp.
333
363
.10.1007/s00165-010-0161-4
74.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, Cambridge, UK.
75.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
76.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.10.1214/ss/1177012413
77.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2008
, “
Verification and Validation Benchmarks
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
716
743
.10.1016/j.nucengdes.2007.02.032
78.
Box
,
G. E. P.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley
, Hoboken, NJ.
79.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
,
1998
, “
Updating Models and Their Uncertainties—I: Bayesian Statistical Framework
,”
J. Eng. Mech.
,
124
(
4
), pp.
455
461
.10.1061/(ASCE)0733-9399(1998)124:4(455)
80.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(
1
), pp.
97
109
.10.1093/biomet/57.1.97
81.
Ching
,
J.
, and
Chen
,
Y. C.
,
2007
, “
Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging
,”
J. Eng. Mech.
,
133
(
7
), pp.
816
832
.10.1061/(ASCE)0733-9399(2007)133:7(816)
82.
Smith
,
R. C.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
83.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2015
, “
Integration of Model Verification, Validation, and Calibration for Uncertainty Quantification in Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
194
209
.10.1016/j.ress.2015.01.023
84.
Parmigiani
,
G.
, and
Inoue
,
L.
,
2009
,
Decision Theory: Principles and Approaches
,
Wiley
, Hoboken, NJ.
85.
Chatzi
,
E. N.
,
Smyth
,
A. W.
, and
Masri
,
S. F.
,
2010
, “
Experimental Application of on-Line Parametric Identification for Nonlinear Hysteretic Systems With Model Uncertainty
,”
J. Struct. Saf.
,
32
(
5
), pp.
326
337
.10.1016/j.strusafe.2010.03.008
86.
Govers
,
Y.
,
Haddad Khodaparast
,
H.
,
Link
,
M.
, and
Mottershead
,
J. E.
,
2015
, “
A Comparison of Two Stochastic Model Updating Methods Using the DLR AIRMOD Test Structure
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
105
114
.10.1016/j.ymssp.2014.06.003
87.
Rocchetta
,
R.
,
Broggi
,
M.
,
Huchet
,
Q.
, and
Patelli
,
E.
,
2018
, “
On-Line Bayesian Model Updating for Structural Health Monitoring
,”
Mech. Syst. Signal Process.
,
103
, pp.
174
195
.10.1016/j.ymssp.2017.10.015
88.
Brynjarsdóttir
,
J.
, and
O'hagan
,
A.
,
2014
, “
Learning About Physical Parameters: The Importance of Model Discrepancy
,”
Inverse Probl.
,
30
(
11
), p.
114007
.10.1088/0266-5611/30/11/114007
89.
Moreu
,
F.
,
Bleck
,
B.
,
Vemuganti
,
S.
,
Rogers
,
D.
, and
Mascarenas
,
D.
,
2017
, “
Augmented Reality Tools for Enhanced Structural Inspection
,”
Structural Health Monitoring
, Stanford, CA, Sept.
1
4
.
90.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution–A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
91.
Worden
,
K.
, and
Manson
,
G.
,
2012
, “
On the Identification of Hysteretic Systems—Part I: Fitness Landscapes and Evolutionary Identification
,”
Mech. Syst. Signal Process.
,
29
, pp.
201
212
.10.1016/j.ymssp.2012.01.004
92.
Worden
,
K.
, and
Becker
,
W.
,
2012
, “
On the Identification of Hysteretic Systems—Part II: Bayesian Sensitivity Analysis and Parameter Confidence
,”
Mech. Syst. Signal Process.
,
29
, pp.
213
227
.10.1016/j.ymssp.2012.01.005
93.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
, Cambridge, MA.
94.
Van der Aalst
,
W. M.
,
1998
, “
The Application of Petri Nets to Workflow Management
,”
J. Circuits, Syst., Comput.
,
8
(
1
), pp.
21
66
.10.1142/S0218126698000043
95.
Benveniste
,
A.
,
Fabre
,
E.
, and
Haar
,
S.
,
2003
, “
Markov Nets: Probabilistic Models for Distributed and Concurrent Systems
,”
IEEE Trans. Autom. Control
,
48
(
11
), pp.
1936
1950
.10.1109/TAC.2003.819076
96.
Uschold
,
M.
, and
Gruninger
,
M.
,
1996
, “
Ontologies: Principles, Methods and Applications
,”
Knowl. Eng. Rev.
,
11
(
2
), pp.
93
136
.10.1017/S0269888900007797
97.
Shames
,
P.
, and
Skipper
,
J.
,
2006
, “
Toward a Framework for Modeling Space Systems Architectures
,”
SpaceOps Conference
, Rome, Italy, June 19–23, p.
5581
.https://www.researchgate.net/publication/240944994_Toward_a_Framework_for_Modeling_Space_Systems_Architectures
98.
Paulheim
,
H.
,
2016
, “
Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods
,”
Semantic Web
,
8
(
3
), pp.
489
508
.10.3233/SW-160218
99.
Yam
,
R.
,
Tse
,
P.
,
Li
,
L.
, and
Tu
,
P.
,
2001
, “
Intelligent Predictive Decision Support System for Condition-Based Maintenance
,”
Int. J. Adv. Manuf. Technol.
,
17
(
5
), pp.
383
391
.10.1007/s001700170173
100.
Maggi
,
F. M.
, and
Westergaard
,
M.
,
2017
, “
Designing Software for Operational Decision Support Through Coloured Petri Nets
,”
Enterp. Inf. Syst.
,
11
(
5
), pp.
576
596
.10.1080/17517575.2015.1067723
101.
Ristoski
,
P.
, and
Paulheim
,
H.
,
2016
, “
Semantic Web in Data Mining and Knowledge Discovery: A Comprehensive Survey
,”
Web Semantics
,
36
, pp.
1
22
.10.1016/j.websem.2016.01.001
102.
Berners-Lee
,
T.
,
Hendler
,
J.
, and
Lassila
,
O.
,
2001
, “
The Semantic Web
,”
Sci. Am.
,
284
(
5
), pp.
34
37
.10.1038/scientificamerican0501-34
103.
Witteveen
,
W.
, and
Irschik
,
H.
,
2009
, “
Efficient Mode Based Computational Approach for Jointed Structures: Joint Interface Modes
,”
AIAA J.
,
47
(
1
), pp.
252
263
.10.2514/1.38436
104.
Bograd
,
S.
,
Reuss
,
P.
,
Schmidt
,
A.
,
Gaul
,
L.
, and
Mayer
,
M.
,
2011
, “
Modeling the Dynamics of Mechanical Joints
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2801
2826
.10.1016/j.ymssp.2011.01.010
105.
Brake
,
M. R.
,
2017
,
The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics
,
Springer
, New York.
106.
Reynes
,
R.
,
1999
, “
Training to Manage Across Silos
,”
Res.-Technol. Manage.
,
42
(
5
), pp.
20
24
.10.1080/08956308.1999.11671301
107.
Rilling
,
J.
,
Witte
,
R.
,
Schuegerl
,
P.
, and
Charland
,
P.
,
2008
, “
Beyond Information Silos—An Omnipresent Approach to Software Evolution
,”
Int. J. Semantic Comput.
,
2
(
4
), pp.
431
468
.10.1142/S1793351X08000567
108.
Atkinson
,
S. R.
,
Caldwell
,
N. H.
,
Maier
,
A. M.
, and
Clarkson
,
P. J.
,
2011
, “
Collaborative Trust Networks in Engineering Design Adaptation
,”
Proceedings of the 18th International Conference on Engineering Design
(
ICED 11
), Vol.
7
, Impacting Society Through Engineering Design, Lyngby/Copenhagen, Denmark, Aug. 15–19, pp.
152
161
.https://www.designsociety.org/publication/30671/COLLABORATIVE+TRUST+NETWORKS+IN+ENGINEERING+DESIGN+ADAPTATION
109.
Beck
,
A. T.
, and
de Santana Gomes
,
W. J.
,
2012
, “
A Comparison of Deterministic, Reliability-Based and Risk-Based Structural Optimization Under Uncertainty
,”
Probab. Eng. Mech.
,
28
, pp.
18
29
.10.1016/j.probengmech.2011.08.007
110.
Jansen
,
M.
,
Lombaert
,
G.
, and
Schevenels
,
M.
,
2015
, “
Robust Topology Optimization of Structures With Imperfect Geometry Based on Geometric Nonlinear Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
452
467
.10.1016/j.cma.2014.11.028
111.
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J.
,
2006
, “
The Value of Using Imprecise Probabilities in Engineering Design
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
969
979
.10.1115/1.2204976
112.
Zhang
,
S.
,
Zhu
,
P.
,
Chen
,
W.
, and
Arendt
,
P.
,
2013
, “
Concurrent Treatment of Parametric Uncertainty and Metamodeling Uncertainty in Robust Design
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
63
76
.10.1007/s00158-012-0805-5
You do not currently have access to this content.