Abstract

In this paper, a new model is proposed for system degradation evaluation under sliding wear failure mechanism. This model estimates the material loss with respect to progression of sliding distance. This model is generated by considering physical and geometrical aspects of the system which is under wear failure mechanism. Several sets of experimental data are used for validation of the presented model. These experimental data are related to the pin-on-disk test including initially conformal and nonconformal contacts. A dataset of the pin-on-disk test by ASTM-G99 standard is used for additional model validation. The rail system data are employed for validation of the model in the practical systems. Uncertainty is analyzed by Monte Carlo simulation to determine the variations of the predicted material loss. Finally, the reliability assessment of these systems is performed.

References

References
1.
Straffelini
,
G.
,
2015
,
Friction and Wear: Methodologies for Design and Control
,
Springer
, Cham, Switzerland.
2.
Modarres
,
M.
,
Amiri
,
M.
, and
Jackson
,
C.
,
2017
,
Probabilistic Physics of Failure Approach to Reliability: Modeling, Accelerated Testing, Prognosis and Reliability Assessment
,
Wiley
, College Park, MD.
3.
Burwell
,
J.
, and
Strang
,
C.
,
1952
, “
Metallic Wear
,”
Proc. R. Soc. London A
,
212
(
1111
), pp.
470
477
.10.1098/rspa.1952.0239
4.
Holm
,
R.
, and
Chapter
,
X.
,
1950
,
Mechanical Wear
,
American Society for Metals
, Cleveland, OH.
5.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.10.1063/1.1721448
6.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
, pp.
443
457
.10.1016/0043-1648(95)90158-2
7.
Barwell
,
F.
,
1958
, “
Report on Papers on Wear Presented at the Institution of Mechanical Engineers Conference
,”
Wear
,
1
(
5
), pp.
418
445
.10.1016/0043-1648(58)90114-5
8.
Srivastava
,
A.
,
Ram
,
K. S.
, and
Lal
,
G.
,
1988
, “
A Simple Analysis for Evaluating Grinding Wheel Loading
,”
Int. J. Mach. Tools Manuf.
,
28
(
2
), pp.
181
190
.10.1016/0890-6955(88)90029-6
9.
Zhang
,
Z.
,
Zhang
,
L.
, and
Mai
,
Y.-W.
,
1996
, “
The Running-In Wear of a Steel/SiCp-Al Composite System
,”
Wear
,
194
(
1–2
), pp.
38
43
.10.1016/0043-1648(95)06671-3
10.
Yang
,
L.
,
2004
, “
Prediction of Net Steady-State Wear Coefficient in an Al-Al2O3 (P)/Steel System With an Integrated Wear Model
,”
Tribol. Lett.
,
17
(
2
), pp.
105
118
.10.1023/B:TRIL.0000032435.03421.02
11.
Yang
,
L.
,
2007
, “
Modeling Transient Adhesive Wear of Tungsten Carbide Inserts Tested With an Angular Setting
,”
Tribol. Int.
,
40
(
7
), pp.
1075
1088
.10.1016/j.triboint.2006.10.005
12.
Kim
,
D.
,
Quagliato
,
L.
,
Park
,
D.
,
Murugesan
,
M.
,
Kim
,
N.
, and
Hong
,
S.
,
2017
, “
Wear-Caused Deflection Evolution of a Slide Rail, Considering Linear and Non-Linear Wear Models
,”
J. Phys.: Conf. Ser.
,
843
, p.
012068
.10.1088/1742-6596/843/1/012068
13.
Pourmostafaei
,
M.
,
Pourgol-Mohammad
,
M.
,
Yazdani
,
M.
, and
Salimi
,
H.
,
2018
, “
System Wear Life Estimation Under Uncertainty
,”
ASME
Paper No. IMECE2018-87015.10.1115/IMECE2018-87015
14.
Mang
,
T.
,
Bobzin
,
K.
, and
Bartels
,
T.
,
2011
,
Industrial Tribology
,
Wiley-VCH
,
Weinheim, Germany
.
15.
Yazdanipour
,
M.
,
Pourgol-Mohammad
,
M.
,
Choupani
,
N.-A.
, and
Yazdani
,
M.
,
2016
, “
Fatigue Life Prediction Based on Probabilistic Fracture Mechanics: Case Study of Automotive Parts
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
2
(
1
), p.
011002
.10.1115/1.4030946
16.
Bayer
,
R. G.
,
2004
,
Mechanical Wear Fundamentals and Testing, Revised and Expanded
,
CRC Press
, New York.
17.
Queener
,
C.
,
Smith
,
T.
, and
Mitchell
,
W.
,
1965
, “
Transient Wear of Machine Parts
,”
Wear
,
8
(
5
), pp.
391
400
.10.1016/0043-1648(65)90170-5
18.
Sarkar
,
A.
,
1976
,
Wear of Metals
(International Series on Materials Science and Technology, Vol.
18
),
Pergamon Press
, Oxford, UK.
19.
Davis
,
J. R.
,
1995
,
Tool Materials. ASM Speciality Handbook
,
ASM International
, Cleveland, OH.
20.
Bressan
,
J.
,
Daros
,
D.
,
Sokolowski
,
A.
,
Mesquita
,
R.
, and
Barbosa
,
C.
,
2008
, “
Influence of Hardness on the Wear Resistance of 17-4 PH Stainless Steel Evaluated by the Pin-on-Disc Testing
,”
J. Mater. Process. Technol.
,
205
(
1–3
), pp.
353
359
.10.1016/j.jmatprotec.2007.11.251
21.
Pourgol-Mohamad
,
M.
,
Mosleh
,
A.
, and
Modarres
,
M.
,
2010
, “
Methodology for the Use of Experimental Data to Enhance Model Output Uncertainty Assessment in Thermal Hydraulics Codes
,”
Reliab. Eng. Syst. Saf.
,
95
(
2
), pp.
77
86
.10.1016/j.ress.2009.08.003
22.
Pourgol-Mohamad
,
M.
,
Mosleh
,
A.
, and
Modarres
,
M.
,
2011
, “
Structured Treatment of Model Uncertainty in Complex Thermal-Hydraulics Codes: Technical Challenges, Prospective and Characterization
,”
Nucl. Eng. Des.
,
241
(
1
), pp.
285
295
.10.1016/j.nucengdes.2010.10.035
23.
Chiachio
,
M.
,
Chiachio
,
J.
, and
Rus
,
G.
,
2012
, “
Reliability in Composites—A Selective Review and Survey of Current Development
,”
Composites, Part B
,
43
(
3
), pp.
902
913
.10.1016/j.compositesb.2011.10.007
24.
Modarres
,
M.
,
Kaminskiy
,
M. P.
, and
Krivtsov
,
V.
,
2016
,
Reliability Engineering and Risk Analysis: A Practical Guide
,
CRC Press
, New York.
25.
Salimi
,
H.
,
Kiad
,
S.
, and
Pourgol-Mohammad
,
M.
,
2018
, “
Stochastic Fatigue Crack Growth Analysis for Space System Reliability
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
4
(
2
), p.
021004
.10.1115/1.4037219
26.
Hitomi
,
K.
,
Nakamura
,
N.
, and
Inoue
,
S.
,
1979
, “
Reliability Analysis of Cutting Tools
,”
ASME J. Eng. Ind.
,
101
(
2
), pp.
185
190
.10.1115/1.3439493
27.
Faal
,
M. Y.
,
Salimi
,
H.
,
Pourgol-Mohammad
,
M.
, and
Saray
,
R. K.
,
2017
, “
Life Assessment Based on Numerical Thermodynamic Entropy Estimation: Case Study of Metal Fatigue
,”
ASME
Paper No. IMECE2017-71739.10.1115/IMECE2017-71739
28.
Sankararaman
,
S.
,
Ling
,
Y.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
.10.1016/j.engfracmech.2011.02.017
29.
Bi
,
S.
,
Prabhu
,
S.
,
Cogan
,
S.
, and
Atamturktur
,
S.
,
2017
, “
Uncertainty Quantification Metrics With Varying Statistical Information in Model Calibration and Validation
,”
AIAA J.
,
55
(
10
), pp.
3570
3583
.10.2514/1.J055733
30.
Bi
,
S.
,
Broggi
,
M.
,
Wei
,
P.
, and
Beer
,
M.
,
2019
, “
The Bhattacharyya Distance: Enriching the P-Box in Stochastic Sensitivity Analysis
,”
Mech. Syst. Signal Process.
,
129
, pp.
265
281
.10.1016/j.ymssp.2019.04.035
31.
Shiri
,
S.
,
Pourgol-Mohammad
,
M.
, and
Yazdani
,
M.
,
2014
, “
Probabilistic Assessment of Fatigue Life in Fiber Reinforced Composites
,”
ASME
Paper No. IMECE2014-37434.10.1115/IMECE2014-37434
32.
Moghanlou
,
L. N.
, and
Pourgol-Mohammad
,
M.
,
2017
, “
Assessment of the Pitting Corrosion Degradation Lifetime: A Case Study of Boiler Tubes
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
3
(
4
), p.
041002
.10.1115/1.4036064
33.
mathwave
,
2013
, “
EasyFit: Distribution Fitting Made Easy
,” mathwave, Dnipropetrovsk, Ukraine, http://www.mathwave.com/easyfit-distributionfitting.html
34.
Caleyo
,
F.
,
Velázquez
,
J.
,
Valor
,
A.
, and
Hallen
,
J.
,
2009
, “
Probability Distribution of Pitting Corrosion Depth and Rate in Underground Pipelines: A Monte Carlo Study
,”
Corros. Sci.
,
51
(
9
), pp.
1925
1934
.10.1016/j.corsci.2009.05.019
35.
Lee
,
N.
,
Lim
,
Y.
, and
Kim
,
N.
,
2017
, “
Life Prediction of Bearing Using Accelerated Life Test Coupled With Analysis
,”
J. Phys.: Conf. Ser.
, 843(1), p.
012068
.
36.
Shiri
,
S.
,
Pourgol-Mohammad
,
M.
, and
Yazdani
,
M.
,
2016
, “
Prediction of Remaining Fatigue Cycles in Composite Materials Under Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
2
(
1
), p.
011001
.10.1115/1.4031037
You do not currently have access to this content.