Abstract

This paper proposes the time-dependent reliability model of structures under different stochastic loads based on the stress–strength interference (SSI) model and probabilistic statistical theory. First, the different stochastic loads mean that the loads are discrete, and that one applied load is from random variable and the other applied load may be from another random variable, and the cumulative effect and correlation are considered when they are applied for multiple times. Second, two different time-dependent reliability models, with and without considering strength degradation, are established in this paper. Meanwhile, the relationship between the discrete load frequency and time is described using Poisson process, and the time-dependent reliability model under continuous time is also provided. Finally, the proposed time-dependent reliability model of structures is validated with the Monte Carlo simulation (MCS), and the effectiveness of the proposed method is testified.

References

References
1.
Yu
,
S.
,
Wang
,
Z.
, and
Zhang
,
K.
,
2018
, “
Sequential Time-Dependent Reliability Analysis for the Lower Extremity Exoskeleton Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
170
, pp.
45
52
.10.1016/j.ress.2017.10.006
2.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.10.1002/j.1538-7305.1944.tb00874.x
3.
Crandall
,
S.
,
Chandiramani
,
K.
, and
Cook
,
R.
,
1966
, “
Some First-Passage Problems in Random Vibration
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
532
538
.10.1115/1.3625118
4.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.10.1016/j.ress.2003.10.005
5.
Singh
,
A.
, and
Mourelatos
,
Z. P.
,
2010
, “
On the Time-Dependent Reliability of Non-Monotonic, Non-Repairable Systems
,”
SAE Int. J. Mater. Manuf.
,
3
(
1
), pp.
425
444
.10.4271/2010-01-0696
6.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071003
.10.1115/1.4023925
7.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.10.1007/s00158-013-0937-2
8.
Jiang
,
C.
,
Huang
,
X. P.
,
Han
,
X.
, and
Zhang
,
D. Q.
,
2014
, “
A Time-Variant Reliability Analysis Method Based on Stochastic Process Discretization
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091009
.10.1115/1.4027865
9.
Li
,
C. Y.
, and
Zhang
,
Y. M.
,
2012
, “
Time-Variant Reliability Assessment and Its Sensitivity Analysis of Cutting Tool Under Invariant Machining Condition Based on Gamma Process
,”
Math. Probl. Eng.
,
2012
, p.
676923
.10.1155/2012/676923
10.
Cazuguel
,
M.
,
Renaud
,
C.
, and
Cognard
,
J. Y.
,
2006
, “
Time-Variant Reliability of Nonlinear Structures: Application to a Denoteative Part of a Plate Floor
,”
Qual. Reliab. Eng. Int.
,
22
(
1
), pp.
101
108
.10.1002/qre.750
11.
Kopustinskas
,
V.
,
Augutis
,
J.
, and
Rimkevicius
,
S.
,
2005
, “
Dynamic Reliability and Risk Assessment of the Accident Localization System of the Ignalina NPP RBMK-1500 Reactor
,”
Reliab. Eng. Syst. Saf.
,
87
(
1
), pp.
101
108
.10.1016/j.ress.2004.04.010
12.
Tian
,
L.
, and
Noore
,
A.
,
2005
, “
Dynamic Software Reliability Prediction: An Approach Based on Support Vector Machines
,”
Int. J. Reliab., Qual. Saf. Eng.
,
12
(
4
), pp.
309
321
.10.1142/S0218539305001847
13.
Beckera
,
G.
,
Camarinopoulos
,
L.
, and
Kabranis
,
D.
,
2002
, “
Dynamic Reliability Under Random Shocks
,”
Reliab. Eng. Syst. Saf.
,
77
(
3
), pp.
239
251
.10.1016/S0951-8320(02)00057-1
14.
Streicher
,
H.
, and
Rackwitz
,
R.
,
2004
, “
Time-Variant Reliability-Oriented Structural Optimization and a Renewal Model for Life-Cycle Costing
,”
Probab. Eng. Mech.
,
19
(
1–2
), pp.
171
183
.10.1016/j.probengmech.2003.11.014
15.
Mao
,
S. S.
,
Wang
,
J. L.
, and
Pu
,
X. L.
,
1998
,
Higher Mathematical Statistics
,
Higher Education, Springer
, Berlin.
16.
Mejri
,
M.
,
Toubal
,
L.
,
Cuillière
,
J. C.
, and
François
,
V.
,
2017
, “
Fatigue Life and Residual Strength of a Short-Natural-Fiber-Reinforced Plastic versus Nylon
,”
Composites, Part B
,
110
, pp.
429
441
.10.1016/j.compositesb.2016.11.036
17.
Xiao
,
N. C.
,
Zuo
,
M. J.
, and
Zhou
,
C. N.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
.10.1016/j.ress.2017.09.008
18.
Mi
,
J.
,
Li
,
Y. F.
,
Yang
,
Y. J.
,
Peng
,
W.
, and
Huang
,
H. Z.
,
2016
, “
Reliability Assessment of Complex Electromechanical Systems Under Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
152
, pp.
1
15
.10.1016/j.ress.2016.02.003
19.
Mi
,
J.
,
Li
,
Y. F.
,
Peng
,
W.
, and
Huang
,
H. Z.
,
2018
, “
Reliability Analysis of Complex Multi-State System With Common Cause Failure Based on Evidential Networks
,”
Reliab. Eng. Syst. Saf.
,
174
, pp.
71
81
.10.1016/j.ress.2018.02.021
20.
Li
,
X. Y.
,
Huang
,
H. Z.
, and
Li
,
Y. F.
,
2018
, “
Reliability Analysis of Phased Mission System With Non-Exponential and Partially Repairable Components
,”
Reliab. Eng. Syst. Saf.
,
175
, pp.
119
127
.10.1016/j.ress.2018.03.008
21.
Li
,
H.
,
Huang
,
H. Z.
,
Li
,
Y. F.
,
Zhou
,
J.
, and
Mi
,
J.
,
2018
, “
Physics of Failure-Based Reliability Prediction of Turbine Blades Using Multi-Source Information Fusion
,”
Appl. Soft Comput.
,
72
, pp.
624
635
.10.1016/j.asoc.2018.05.015
22.
Qian
,
H. M.
,
Huang
,
H. Z.
, and
Li
,
Y. F.
,
2019
, “
A Novel Single-Loop Procedure for Time-Variant Reliability Analysis Based on Kriging Model
,”
Appl. Math. Modell.
,
75
, pp.
735
748
.10.1016/j.apm.2019.07.006
23.
Kanjilal
,
O.
, and
Manohar
,
C. S.
,
2017
, “
Girsanov's Transformation Based Variance Reduced Monte Carlo Simulation Schemes for Reliability Estimation in Nonlinear Stochastic Dynamics
,”
J. Comput. Phys.
,
341
, pp.
278
294
.10.1016/j.jcp.2017.03.047
24.
Schneider
,
R.
,
Thöns
,
S.
, and
Straub
,
D.
,
2017
, “
Reliability Analysis and Updating of Deteriorating Systems With Subset Simulation
,”
Struct. Saf.
,
64
, pp.
20
36
.10.1016/j.strusafe.2016.09.002
25.
Savage
,
G. J.
, and
Son
,
Y. K.
,
2011
, “
The Set-Theory Method for Systems Reliability of Structures With Degrading Components
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp.
108
116
.10.1016/j.ress.2010.07.009
26.
Yang
,
D. Y.
,
Teng
,
J. G.
, and
Frangopol
,
D. M.
,
2017
, “
Cross-Entropy-Based Adaptive Importance Sampling for Time-Dependent Reliability Analysis of Deteriorating Structures
,”
Struct. Saf.
,
66
, pp.
38
50
.10.1016/j.strusafe.2016.12.006
You do not currently have access to this content.