Abstract

Electricity transmission systems are essential to a community's functionalities but are susceptible to the aggressive environmental or operational factors such as the natural hazards and the environment-induced component deterioration during their service life. The service reliability of a power grid system shall be assessed under a probability-based framework taking into account the spatial uncertainty and correlation arising from both the component performance (i.e., plants, substations, and transmission lines) and the load effects. This paper estimates the resilience of a power grid system in the presence of the impacts of component deterioration and correlation, with an emphasis on the earthquake excitation hazards. The spatial variability of the component capacity and that associated with the earthquake ground motion are modeled by the Gaussian copula function. A posthazard performance indicator (PPI) is used to represent the seismic vulnerability of a grid system subjected to earthquake actions. With this, the statistics (mean value and variance) of the PPI conditional on the occurrence of an earthquake is estimated by a simulation-based method, and the resilience of the grid system (measured by a resilience index based on the recovery process of PPI) is assessed in a closed-form. The applicability of the proposed method is demonstrated through the seismic resilience assessment of an illustrative grid system.

References

References
1.
NAC
,
2012
, “
Disaster Resilience: A National Imperative
,” The National Academies, Committee on Increasing National Resilience to Hazards and Disasters, Committee on Science, Engineering, and Public Policy, Washington, DC,
Report
.10.17226/13457
2.
McAllister
,
T.
,
2013
, “
Developing Guidelines and Standards for Disaster Resilience of the Built Environment: A Research Needs Assessment
,” National Institute of Standards and Technology, U.S. Department of Commerce, Washington, DC, Report No.
1795
.10.6028/NIST.TN.1795
3.
Ellingwood
,
B. R.
,
Cutler
,
H.
,
Gardoni
,
P.
,
Peacock
,
W. G.
,
van de Lindt
,
J. W.
, and
Wang
,
N.
,
2016
, “
The Centerville Virtual Community: A Fully Integrated Decision Model of Interacting Physical and Social Infrastructure Systems
,”
Sustainable Resilient Infrastruct.
,
1
(
3–4
), pp.
95
107
.10.1080/23789689.2016.1255000
4.
Feng
,
K.
,
Wang
,
N.
,
Li
,
Q.
, and
Lin
,
P.
,
2017
, “
Measuring and Enhancing Resilience of Building Portfolios Considering the Functional Interdependence Among Community Sectors
,”
Struct. Saf.
,
66
, pp.
118
126
.10.1016/j.strusafe.2017.02.006
5.
Bompard
,
E.
,
Gao
,
C.
,
Masera
,
M.
,
Napoli
,
R.
,
Russo
,
A.
,
Stefanini
,
A.
, and
Xue
,
F.
,
2007
, “
Approaches to the Security Analysis of Power Systems: Defence Strategies Against Malicious Threats
,” European Commission Directorate, General Joint Research Centre, Institute IPSC, Ispra, Italy, Report No.
EUR 22683 EN
.https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/approaches-security-analysis-power-systems-defence-strategies-against-malicious-threats
6.
Veeramany
,
A.
,
Unwin
,
S. D.
,
Coles
,
G. A.
,
Dagle
,
J. E.
,
Millard
,
D. W.
,
Yao
,
J.
,
Glantz
,
C. S.
, and
Gourisetti
,
S. N.
,
2016
, “
Framework for Modeling High-Impact, Low-Frequency Power Grid Events to Support Risk-Informed Decisions
,”
Int. J. Disaster Risk Reduct.
,
18
, pp.
125
137
.10.1016/j.ijdrr.2016.06.008
7.
Adachi
,
T.
, and
Ellingwood
,
B. R.
,
2008
, “
Serviceability of Earthquake-Damaged Water Systems: Effects of Electrical Power Availability and Power Backup Systems on System Vulnerability
,”
Reliab. Eng. Syst. Saf.
,
93
, pp.
78
88
.10.1016/j.ress.2006.10.014
8.
Baldick
,
R.
,
Boutsika
,
T.
,
Hur
,
J.
,
Joung
,
M.
,
Wu
,
Y.
, and
Zhong
,
M.
,
2009
, “
Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks
,” The University of Texas at Austin, Austin, TX, Report No.
DOE/ER/25671-1
.10.2172/950426
9.
Ouyang
,
M.
, and
Dueñas-Osorio
,
L.
,
2014
, “
Multi-Dimensional Hurricane Resilience Assessment of Electric Power Systems
,”
Struct. Saf.
,
48
, pp.
15
24
.10.1016/j.strusafe.2014.01.001
10.
Salman
,
A. M.
, and
Li
,
Y.
,
2017
, “
Multihazard Risk Assessment of Electric Power Systems
,”
J. Struct. Eng.
,
143
(
3
), p.
04016198
.10.1061/(ASCE)ST.1943-541X.0001688
11.
Wang
,
C.
,
Feng
,
K.
,
Zhang
,
H.
, and
Li
,
Q.
,
2019
, “
Seismic Performance Assessment of Electric Power Systems Subjected to Spatially Correlated Earthquake Excitations
,”
Struct. Infrastruct. Eng.,
15(3), pp. 351–361.10.1080/15732479.2018.1547766
12.
Ellingwood
,
B. R.
,
2005
, “
Risk-Informed Condition Assessment of Civil Infrastructure: State of Practice and Research Issues
,”
Struct. Infrastruct. Eng.
,
1
(
1
), pp.
7
18
.10.1080/15732470412331289341
13.
Wang
,
C.
,
Zhang
,
H.
, and
Li
,
Q.
,
2017
, “
Reliability Assessment of Aging Structures Subjected to Gradual and Shock Deteriorations
,”
Reliab. Eng. Syst. Saf.
,
161
, pp.
78
86
.10.1016/j.ress.2017.01.014
14.
Zhang
,
H.
,
Ha
,
L.
,
Li
,
Q.
, and
Beer
,
M.
,
2017
, “
Imprecise Probability Analysis of Steel Structures Subject to Atmospheric Corrosion
,”
Struct. Saf.
,
67
, pp.
62
69
.10.1016/j.strusafe.2017.04.001
15.
Feliu
,
S.
,
Morcillo
,
M.
, and
Feliu
,
S.
, Jr
,
1993
, “
The Prediction of Atmospheric Corrosion From Meteorological and Pollution Parameters—II: Long-Term Forecasts
,”
Corros. Sci.
,
34
(
3
), pp.
415
422
.10.1016/0010-938X(93)90113-U
16.
McCuen
,
R. H.
, and
Albrecht
,
P.
,
1994
, “
Composite Modeling of Atmospheric Corrosion Penetration Data
,”
Application of Accelerated Corrosion Tests to Service Life Prediction of Materials
,
ASTM International
, West Conshohocken, PA.10.1520/STP24877S
17.
De la Fuente
,
D.
,
Díaz
,
I.
,
Simancas
,
J.
,
Chico
,
B.
, and
Morcillo
,
M.
,
2011
, “
Long-Term Atmospheric Corrosion of Mild Steel
,”
Corros. Sci.
,
53
(
2
), pp.
604
617
.10.1016/j.corsci.2010.10.007
18.
Bruneau
,
M.
,
Chang
,
S. E.
,
Eguchi
,
R. T.
,
Lee
,
G. C.
,
O'Rourke
,
T. D.
,
Reinhorn
,
A. M.
,
Shinozuka
,
M.
,
Tierney
,
K.
,
Wallace
,
W. A.
, and
von Winterfeldt
,
D.
,
2003
, “
A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities
,”
Earthquake Spectra
,
19
(
4
), pp.
733
752
.10.1193/1.1623497
19.
Bocchini
,
P.
,
Frangopol
,
D. M.
,
Ummenhofer
,
T.
, and
Zinke
,
T.
,
2014
, “
Resilience and Sustainability of Civil Infrastructure: Toward a Unified Approach
,”
J. Infrastruct. Syst.
,
20
(
2
), p.
04014004
.10.1061/(ASCE)IS.1943-555X.0000177
20.
Chang
,
S. E.
, and
Shinozuka
,
M.
,
2004
, “
Measuring Improvements in the Disaster Resilience of Communities
,”
Earthquake Spectra
,
20
(
3
), pp.
739
755
.10.1193/1.1775796
21.
Cimellaro
,
G. P.
,
Reinhorn
,
A. M.
, and
Bruneau
,
M.
,
2010
, “
Framework for Analytical Quantification of Disaster Resilience
,”
Eng. Struct.
,
32
(
11
), pp.
3639
3649
.10.1016/j.engstruct.2010.08.008
22.
Zobel
,
C. W.
,
2011
, “
Representing Perceived Tradeoffs in Defining Disaster Resilience
,”
Decis. Support Syst.
,
50
(
2
), pp.
394
403
.10.1016/j.dss.2010.10.001
23.
Bompard
,
E.
,
Napoli
,
R.
, and
Xue
,
F.
,
2009
, “
Analysis of Structural Vulnerabilities in Power Transmission Grids
,”
Int. J. Crit. Infrastruct. Prot.
,
2
(
1–2
), pp.
5
12
.10.1016/j.ijcip.2009.02.002
24.
Bompard
,
E.
,
Wu
,
D.
, and
Xue
,
F.
,
2011
, “
Structural Vulnerability of Power Systems: A Topological Approach
,”
Electr. Power Syst. Res.
,
81
(
7
), pp.
1334
1340
.10.1016/j.epsr.2011.01.021
25.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Collective Dynamics of ‘Small-World’ Networks
,”
Nature
,
393
(
6684
), pp.
440
442
.10.1038/30918
26.
Barabási
,
A.-L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Science
,
286
(
5439
), pp.
509
512
.10.1126/science.286.5439.509
27.
Crucitti
,
P.
,
Latora
,
V.
, and
Marchiori
,
M.
,
2004
, “
A Topological Analysis of the Italian Electric Power Grid
,”
Phys. A
,
338
(
1–2
), pp.
92
97
.10.1016/j.physa.2004.02.029
28.
Kinney
,
R.
,
Crucitti
,
P.
,
Albert
,
R.
, and
Latora
,
V.
,
2005
, “
Modeling Cascading Failures in the North American Power Grid
,”
Eur. Phys. J. B
,
46
(
1
), pp.
101
107
.10.1140/epjb/e2005-00237-9
29.
Buldyrev
,
S. V.
,
Havlin
,
S.
,
Parshani
,
R.
,
Paul
,
G.
, and
Stanley
,
H. E.
,
2010
, “
Catastrophic Cascade of Failures in Interdependent Networks
,”
Nature
,
464
(
7291
), pp.
1025
1028
.10.1038/nature08932
30.
Bazaraa
,
M. S.
,
Jarvis
,
J. J.
, and
Sherali
,
H. D.
,
2010
,
Linear Programming and Network Flows
, 4th ed.,
Wiley
,
Hoboken, NJ
.
31.
Seifi
,
H.
, and
Sepasian
,
M. S.
,
2011
,
Electric Power System Planning
,
Springer
, Berlin.10.1007/978-3-642-17989-1
32.
Wang
,
M.
, and
Takada
,
T.
,
2005
, “
Macrospatial Correlation Model of Seismic Ground Motions
,”
Earthquake Spectra
,
21
(
4
), pp.
1137
1156
.10.1193/1.2083887
33.
Goda
,
K.
, and
Hong
,
H. P.
,
2008
, “
Spatial Correlation of Peak Ground Motions and Response Spectra
,”
Bull. Seismol. Soc. Am.
,
98
(
1
), pp.
354
365
.10.1785/0120070078
34.
Jayaram
,
N.
, and
Baker
,
J. W.
,
2009
, “
Correlation Model for Spatially Distributed Ground-Motion Intensities
,”
Earthquake Eng. Struct. Dyn.
,
38
, pp.
1687
1708
.10.1002/eqe.922
35.
Lee
,
R.
, and
Kiremidjian
,
A. S.
,
2007
, “
Uncertainty and Correlation for Loss Assessment of Spatially Distributed Systems
,”
Earthquake Spectra
,
23
(
4
), pp.
753
770
.10.1193/1.2791001
36.
Goda
,
K.
, and
Hong
,
H. P.
,
2008
, “
Estimation of Seismic Loss for Spatially Distributed Buildings
,”
Earthquake Spectra
,
24
(
4
), pp.
889
910
.10.1193/1.2983654
37.
Bonstrom
,
H.
, and
Corotis
,
R. B.
,
2015
, “
Building Portfolio Seismic Loss Assessment Using the First-Order Reliability Method
,”
Struct. Saf.
,
52
, pp.
113
120
.10.1016/j.strusafe.2014.09.005
38.
Boore
,
D. M.
, and
Atkinson
,
G. M.
,
2008
, “
Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods Between 0.01 s and 10.0 s
,”
Earthquake Spectra
,
24
(
1
), pp.
99
138
.10.1193/1.2830434
39.
Esposito
,
S.
, and
Iervolino
,
I.
,
2011
, “
PGA and PGV Spatial Correlation Models Based on European Multievent Datasets
,”
Bull. Seismol. Soc. Am.
,
101
(
5
), pp.
2532
2541
.10.1785/0120110117
40.
Nelsen
,
R.
,
2006
,
An Introduction to Copulas
,
Springer
,
New York
.
41.
Song
,
P. X.-K.
,
2000
, “
Multivariate Dispersion Models Generated From Gaussian Copula
,”
Scand. J. Stat.
,
27
(
2
), pp.
305
320
.10.1111/1467-9469.00191
42.
Melchers
,
R.
,
1999
,
Structural Reliability Analysis and Prediction
,
Wiley
,
New York
.
43.
Shiraki
,
N.
,
Shinozuka
,
M.
,
Moore
,
J. E.
,
Chang
,
S. E.
,
Kameda
,
H.
, and
Tanaka
,
S.
,
2007
, “
System Risk Curves: Probabilistic Performance Scenarios for Highway Networks Subject to Earthquake Damage
,”
J. Infrastruct. Syst.
,
13
(
1
), pp.
43
54
.10.1061/(ASCE)1076-0342(2007)13:1(43)
44.
FEMA
,
2012
, “
Multi-Hazard Loss Estimation Methodology, Earthquake Model: Hazus-MH 2.1
,” Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division, Washington, DC, Report.
45.
Baker
,
J. W.
,
2008
, “
Introducing Correlation Among Fragility Functions for Multiple Components
,”
14th World Conference on Earthquake Engineering
, Beijing, China, Oct. 12–17, pp.
1
8
.https://www.researchgate.net/publication/242229574_Introducing_correlation_among_fragility_functions_for_multiple_components
46.
Chopra
,
A. K.
, and
Goel
,
R. K.
,
2000
, “
Evaluation of NSP to Estimate Seismic Deformation: SDF Systems
,”
J. Struct. Eng.
,
126
(
4
), pp.
482
490
.10.1061/(ASCE)0733-9445(2000)126:4(482)
47.
Zhang
,
L.
, and
Wang
,
C.
,
2018
, “
Probability-Based Practice-Oriented Seismic Behaviour Assessment of Simply Supported RC Bridges Considering the Variation and Correlation in Pier Performance
,”
J. Traffic Transp. Eng. (Engl. Ed.)
,
5
(
6
), pp.
491
502
.10.1016/j.jtte.2018.10.006
48.
Shinozuka
,
M.
,
Feng
,
M. Q.
,
Lee
,
J.
, and
Naganuma
,
T.
,
2000
, “
Statistical Analysis of Fragility Curves
,”
J. Eng. Mech.
,
126
(
12
), pp.
1224
1231
.10.1061/(ASCE)0733-9399(2000)126:12(1224)
49.
Vitoontus
,
S.
,
2012
, “
Risk Assessment of Building Inventories Exposed to Large Scale Natural Hazards
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/43676
50.
Mieler
,
M.
,
Stojadinovic
,
B.
,
Budnitz
,
R.
,
Comerio
,
M.
, and
Mahin
,
S.
,
2015
, “
A Framework for Linking Community-Resilience Goals to Specific Performance Targets for the Built Environment
,”
Earthquake Spectra
,
31
(
3
), pp.
1267
1283
.10.1193/082213EQS237M
51.
Wang
,
C.
, and
Zhang
,
H.
,
2017
, “
Probability-Based Cumulative Damage Assessment of Structures Subjected to Non-Stationary Repeated Loads
,”
Adv. Struct. Eng.
,
20
(
11
), pp.
1784
1790
.10.1177/1369433217713927
52.
Sabetta
,
F.
, and
Pugliese
,
A.
,
1996
, “
Estimation of Response Spectra and Simulation of Nonstationary Ground Motions
,”
Bull. Seismol. Soc. Am.
,
86
(
2
), pp.
337
352
.https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/86/2/337/120011/Estimation-of-response-spectra-and-simulation-of?redirectedFrom=PDF
You do not currently have access to this content.