Abstract

The early design stage of mechanical structures is often characterized by unknown or only partially known boundary conditions and environmental influences. Particularly, in the case of safety-relevant components, such as the crumple zone structure of a car, those uncertainties must be appropriately quantified and accounted for in the design process. For this purpose, possibility theory provides a suitable tool for the modeling of incomplete information and uncertainty propagation. However, the numerical propagation of uncertainty described by possibility theory is accompanied by high computational costs. The necessarily repeated model evaluations render the uncertainty analysis challenging to be realized if a model is complex and of large scale. Oftentimes, simplified and idealized models are used for the uncertainty analysis to speed up the simulation while accepting a loss of accuracy. The proposed multifidelity scheme for possibilistic uncertainty analysis, instead, takes advantage of the low costs of an inaccurate low-fidelity model and the accuracy of an expensive high-fidelity model. For this purpose, the functional dependency between the high- and low-fidelity model is exploited and captured in a possibilistic way. This results in a significant speedup for the uncertainty analysis while ensuring accuracy by using only a low number of expensive high-fidelity model evaluations. The proposed approach is applied to an automotive car crash scenario in order to emphasize its versatility and applicability.

References

1.
World Health Organization
,
2018
, “Global Status Report on Road Safety 2018,”
World Health Organization
,
Geneva, Switzerland
.
2.
Jost
,
G.
,
Allsop
,
R.
,
Steriu
,
M.
, and
Enculescu
,
S.
,
2012
, “
A Challenging Start Towards the EU 2020 Road Safety Target: 6th Road Safety Pin Report
,” European Transport Safety Council, Etterbeek, Belgium.
3.
Kramer
,
F.
,
2009
, Passive Sicherheit Von Kraftfahrzeugen—Biomechanik-Simulation-Sicherheit im Entwicklungsprozess,
Springer-Verlag
,
Berlin
(in German).
4.
Spethmann
,
P.
,
Thomke
,
S. H.
, and
Herstatt
,
C.
,
2006
, “
The Impact of Crash Simulation on Productivity and Problem-Solving in Automotive R&D
,” Technologie-und Innovations management, Technische Universität Hamburg, Hamburg, Germany.
5.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
,
2002
, “
Error and Uncertainty in Modeling and Simulation
,”
Reliab. Eng. Syst. Saf.
,
75
(
3
), pp.
333
357
.10.1016/S0951-8320(01)00120-X
6.
Marzougui
,
D.
,
Samaha
,
R. R.
,
Cui
,
C.
, and
Kan
,
C.
,
2012
, “
Extended Validation of the Finite Element Model for the 2001 Ford Taurus Passenger Sedan
,” National Crash Analysis Center, George Washington University, Ashburn, VA, Report No. 13-2567.
7.
Dubois
,
D.
, and
Prade
,
H.
,
1988
, Possibility Theory—An Approach to Computerized Processing of Uncertainty,
Plenum Press
,
New York
.
8.
Dubois
,
D.
, and
Prade
,
H.
,
1992
, “
When Upper Probabilities Are Possibility Measures
,”
Fuzzy Sets Systems
,
49
(
1
), pp.
65
74
.10.1016/0165-0114(92)90110-P
9.
Destercke
,
S.
, and
Dubois
,
D.
,
2006
, “
A Unified View of Some Representations of Imprecise Probabilities
,”
Adv. Soft Comput.
,
37
, pp.
249
257
.10.1007/3-540-34777-1
10.
Baudrit
,
C.
, and
Dubois
,
D.
,
2006
, “
Practical Representations of Incomplete Probabilistic Knowledge
,”
Comput. Stat. Data Anal.
,
51
(
1
), pp.
86
108
.10.1016/j.csda.2006.02.009
11.
Mäck
,
M.
, and
Hanss
,
M.
,
2018
, “
A Multi-Fidelity Approach for Possibilistic Uncertainty Analysis
,”
Seventh International Conference on Uncertainties in Structural Dynamics (USD)
, Leuven, Belgium, Paper No. 187.
12.
Koutsourelakis
,
P.
,
2009
, “
Accurate Uncertainty Quantification Using Inaccurate Computational Models
,”
SIAM J. Sci. Comput.
,
31
(5), pp.
3274
3300
.10.1137/080733565
13.
Biehler
,
J.
,
Gee
,
M. W.
, and
Wall
,
W. A.
,
2015
, “
Towards Efficient Uncertainty Quantification in Complex and Large-Scale Biomechanical Problems Based on a Bayesian Multi-Fidelity Scheme
,”
Biomech. Model. Mechanobiol.
,
14
(
3
), pp.
489
513
.10.1007/s10237-014-0618-0
14.
Kennedy
,
M.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.10.1093/biomet/87.1.1
15.
Le Gratiet
,
L.
,
2013
, “
Bayesian Analysis of Hierarchical Multifidelity Codes
,”
SIAM/ASA J. Uncertainty Quantif.
,
1
(
1
), pp.
244
269
.10.1137/120884122
16.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.10.1137/16M1082469
17.
Biehler
,
J.
,
Mäck
,
M.
,
Nitzler
,
J.
,
Hanss
,
M.
,
Koutsourelakis
,
P.-S.
, and
Wall
,
W. A.
,
2019
, “
Multifidelity Approaches for Uncertainty Quantification
,”
GAMM-Mitteilungen
,
42
(
2
), p.
e201900008
.10.1002/gamm.201900008
18.
Zadeh
,
L.
,
1978
, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
1
(
1
), pp.
3
28
.10.1016/0165-0114(78)90029-5
19.
Dempster
,
A. P.
,
1967
, “
Upper and Lower Probabilities Induced by a Multivalued Mapping
,”
Ann. Math. Stat.
,
38
(
2
), pp.
325
339
.10.1214/aoms/1177698950
20.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
21.
Hisdal
,
E.
,
1978
, “
Conditional Possibilities Independence and Noninteraction
,”
Fuzzy Sets Syst.
,
1
(
4
), pp.
283
297
.10.1016/0165-0114(78)90019-2
22.
de Cooman
,
G.
,
1997
, “
Possibility Theory—II: Conditional Possibility
,”
Int. J. Gen. Syst.
,
25
(
4
), pp.
325
351
.10.1080/03081079708945161
23.
Zadeh
,
L. A.
,
1975
, “
The Concept of a Linguistic Variable and Its Application to Approximate Reasoning
,”
Inf. Sci.
,
8
(
3
), pp.
199
249
.10.1016/0020-0255(75)90036-5
24.
Walz
,
N.-P.
,
2016
, “
Fuzzy Arithmetical Methods for Possibilistic Uncertainty Analysis
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
25.
Walley
,
P.
,
1991
, Statistical Reasoning With Imprecise Probabilities,
Chapman & Hall
,
London, UK
.
26.
Hose
,
D.
,
Mäck
,
M.
, and
Hanss
,
M.
,
2019
, “
On Probability-Possibility Consistency in High-Dimensional Propagation Problems
,”
Third International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP)
, ECCOMAS Proceedia, Crete, Greece, Paper No. 18439.
27.
Mäck
,
M.
, and
Hanss
,
M.
,
2019
, “
Uncertainty Analysis of a Car Crash Scenario Using a Possibilistic Multi-Fidelity Scheme
,”
Third International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP)
, ECCOMAS Proceedia, Crete, Greece, Paper No. 18645.
28.
Ishibuchi
,
H.
, and
Nii
,
M.
,
2001
, “
Fuzzy Regression Using Asymmetric Fuzzy Coefficients and Fuzzified Neural Networks
,”
Fuzzy Sets Syst.
,
119
(
2
), pp.
273
290
.10.1016/S0165-0114(98)00370-4
29.
Dubois
,
D.
, and
Prade
,
H.
,
2014
, “
Possibilistic Logic—An Overview
,”
In Computational Logic (Handbook of the History of Logic)
,
J. H.
Siekmann
, ed., Vol.
9
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
283
342
.
30.
Sedlaczek
,
K.
, and
Eberhard
,
P.
,
2006
, “
Using Augmented Lagrangian Particle Swarm Optimization for Constrained Problems in Engineering
,”
Struct. Multidiscip. Optim.
,
32
(
4
), pp.
277
286
.10.1007/s00158-006-0032-z
31.
Hose
,
D.
,
Mäck
,
M.
, and
Hanss
,
M.
,
2019
, “
Robust Optimization in Possibility Theory
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng
.10.1115/1.4044037
32.
Franzelin
,
F.
,
Diehl
,
P.
, and
Pflüger
,
D.
,
2015
, “
Non-Intrusive Uncertainty Quantification With Sparse Grids for Multivariate Peridynamic Simulations
,” Meshfree Methods for Partial Differential Equations VII, Vol.
100
,
Springer
,
Cham, Switzerland
, pp.
115
143
.
You do not currently have access to this content.