Abstract

Centrifugal compressors used in floating production storage and offloading (FPSO) have special characteristics, forcing manufacturers to build machines that operate at higher speeds in order to achieve the required process performance. Under these operating and design conditions, a special balance procedure called high-speed balancing may be necessary. This procedure is generally done in a special workbench of specialized companies and carrying out a field balance of these machines is an unlikely alternative. Therefore, the development of techniques to identify unbalance malfunction prior to reaching the machine vibration trip limits is essential to minimize the unit downtime. Data-based techniques are strong candidates for the task, since they can take full advantage of huge amounts of available data, allowing the information to be used in an effective way. In this work, two different techniques were chosen to improve unbalance identification: Mahalanobis–Taguchi system (MTS) and principal component analysis (PCA). Considering a real machine, several unbalance conditions were simulated and the results are presented and discussed. Both methods were able to detect unbalance, with a slightly advantage for PCA for the considered conditions.

References

References
1.
Tokuyama
,
S.
,
Kobayashi
,
M.
,
Nakaniwa
,
A.
, and
Saburi
,
A.
,
2014
, “
Verification Test of 700 Bar Super High-Pressure Robust Compressor
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
51
(
3
), pp.
32
42
.
2.
ANP (Agência Nacional do Petróleo, Gás Natural e Biocombustíveis)
,
2000
, “
Regulamento Técnico de Queimas e Perdas de Petróleo e Gás Natural [Technical Regulation on Burning and Loss of Oil and Natural Gas]
,” Portaria ANP N° 249, de 1° de novembro 2000, Diário Oficial da União, Poder Executivo, Brasília, DF (in Portuguese).
3.
Boyce
,
P. B.
,
2012
,
Gas Turbine Engineering Handbook
,
4th ed.
,
Butterworth-Heinemann, Elsevier
,
Cambridge, MA
, pp.
675
691
.
4.
Ehrich
,
F. F.
,
1990
, “
Pseudo-High-Speed Balancing
,”
ASME J. Vib. Acoust.
,
112
(
4
), pp.
418
426
.10.1115/1.2930123
5.
Yin
,
S.
,
Ding
,
S. X.
,
Haghani
,
A.
,
Hao
,
H.
, and
Zhang
,
P.
,
2015
, “
Data-Based Techniques Focused on Modern Industry: An Overview
,”
IEEE Trans. Ind. Electron.
,
62
(
1
), pp.
657
667
.10.1109/TIE.2014.2308133
6.
MacGregor
,
J. F.
,
Yu
,
H.
,
García Muñoz
,
S.
, and
Flores-Cerrillo
,
J.
,
2005
, “
Data-Based Latent Variable Methods for Process Analysis, Monitoring and Control
,”
Comput. Chem. Eng.
,
29
(
6
), pp.
1217
1223
.10.1016/j.compchemeng.2005.02.007
7.
Wold
,
S.
,
Geladi
,
P.
,
Esbensen
,
K.
, and
Öhman
,
J.
,
1987
, “
Multi-Way Principal Components-and PLS-Analysis
,”
J. Chemom.
,
1
(
1
), pp.
41
56
.10.1002/cem.1180010107
8.
Ghasemi
,
E.
,
Aaghaie
,
A.
, and
Cudney
,
E. A.
,
2015
, “
Mahalanobis–Taguchi System: A Review
,”
Int. J. Qual. Reliab. Manage.
,
32
(
3
), pp.
291
307
.10.1108/IJQRM-02-2014-0024
9.
Sarkar
,
J.
,
Saha
,
S.
, and
Agrawal
,
S.
,
2014
, “
An Efficient Use of Principal Component Analysis in Workload Characterization—A Study
,”
AASRI Proc.
,
8
, pp.
68
74
.10.1016/j.aasri.2014.08.012
10.
API,
2009
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry Services
,”
American Petroleum Institute
,
Washington, DC
, Standard No. API Standard 617.
11.
MacGregor
,
J. F.
, and
Cinar
,
A.
,
2012
, “
Monitoring, Fault Diagnosis, Fault-Tolerant Control and Optimization: Data Driven Methods
,” Comput.
Chem. Eng.
,
47
, pp.
111
120
.10.1016/j.compchemeng.2012.06.017
12.
Yin
,
S.
,
Ding
,
S. X.
,
Haghani
,
A.
,
Hao
,
H.
, and
Zhang
,
P.
,
2012
, “
A Comparison Study of Basic Data-Driven Fault Diagnosis and Process Monitoring Methods on the Benchmark Tennessee Eastman Process
,”
J. Process, Control
,
22
(9), pp.
1557
1581
.10.1016/j.jprocont.2012.06.009
13.
Russell
,
E. L.
,
Chiang
,
L. H.
, and
Braatz
,
R. D.
,
2000
, “
Fault Detection in Industrial Processes Using Canonical Variate Analysis and Dynamic Principal Component Analysis
,”
Chemom. Intell. Lab. Syst.
,
51
(
1
), pp.
81
93
.10.1016/S0169-7439(00)00058-7
14.
Liparas
,
D.
,
Angelis
,
L.
, and
Feldt
,
R.
,
2012
, “
Applying the Mahalanobis–Taguchi Strategy for Software Defect Diagnosis
,”
Autom. Software Eng.
,
19
(
2
), pp.
141
165
.10.1007/s10515-011-0091-2
15.
Woodall
,
W. H.
,
Koudelik
,
R.
,
Tsui
,
K.-L.
,
Kim
,
S. B.
,
Stoumbos
,
Z. G.
, and
Carvounis
,
C. P.
,
2003
, “
A Review and Analysis of the Mahalanobis–Taguchi System
,”
Technometrics
,
45
(
1
), pp.
1
15
.10.1198/004017002188618626
16.
John
,
B.
,
2014
, “
Application of Mahalanobis–Taguchi System and Design of Experiments to Reduce the Field Failures of Splined Shafts
,”
Int. J. Qual. Reliab. Manage.
,
31
(
6
), pp.
681
697
.10.1108/IJQRM-10-2012-0134
17.
Jin
,
X.
, and
Chow
,
T. W. S.
,
2013
, “
Anomaly Detection of Cooling Fan and Fault Classification of Induction Motor Using Mahalanobis–Taguchi System
,”
Expert Syst. Appl.
,
40
(
15
), pp.
5787
5795
.10.1016/j.eswa.2013.04.024
18.
Soylemezoglu
,
A.
,
Jagannathan
,
S.
, and
Saygin
,
C.
,
2011
, “
Mahalanobis–Taguchi System as a Multi-Sensor-Based Decision-Making Prognostics Tool for Centrifugal Pump Failures
,”
IEEE Trans. Reliab.
,
60
(
4
), pp.
864
878
.10.1109/TR.2011.2170255
19.
Yoshida
,
T.
,
Bannai
,
M.
,
Yoshida
,
M.
,
Yamada
,
H.
, and
Ishikawa
,
M.
,
2008
, “
Multidimensional Load Estimation Algorithms That Enable Performance Analysis of Industrial Gas Turbines Without a Priori Information
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
041703
.10.1115/1.2900727
20.
Cudney
,
E. A.
,
Drain
,
D.
,
Paryani
,
K.
, and
Sharma
,
N.
,
2009
, “
A Comparison of the Mahalanobis-Taguchi System to a Standard Statistical Method for Defect Detection
,”
J. Ind. Syst. Eng.
,
2
(
4
), pp.
250
258
.
21.
Silva
,
D. H. J.
,
2013
, “
Processamento de Sinais Para Monitoramento de Vibrações em Unidades Geradoras Hidrelétricas [Signal Processing for Vibration Monitoring in Hydroelectric Generating Units]
,” M.Sc. dissertation, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (in Portuguese).
22.
Muszynska
,
A.
,
2005
,
Rotordynamics
(Mechanical Engineering Series),
1st ed.
,
L. L.
Faulkner
, ed.,
Taylor & Francis Group
,
Boca Raton, FL
.
23.
Bently
,
D. E.
, and
Hatch
,
C. T.
,
2003
,
Fundamentals of Rotating Machinery Diagnostics
,
1st ed.
,
P.
Bob Grissom
, ed., Bently Pressurized Bearing Press, Minden, NV, p.
725
.
24.
Walker
,
R.
,
Perinpanayagam
,
S.
, and
Jennions
,
I. K.
,
2013
, “
Rotordynamic Faults: Recent Advances in Diagnosis and Prognosis (Review Article)
,”
Int. J. Rotating Mach.
,
2013
, p.
856865
.10.1155/2013/856865
25.
Mechefske
,
C. K.
,
2005
,
Vibration and Shock Handbook
(Mechanical Engineering Series),
C. W.
de Silva
, ed.,
CRC Press
,
Boca Raton, FL.
26.
Freire
,
E.
,
2006
, “
Vibração em Hidrogeradores [Hydro Generators Vibrations]
,”
III ENAM—Encontro Nacional De Máquinas Rotativas
,
Foz do Iguaçu, PR, Brazil
,
Nov. 19–22
, Comitê Nacional Brasileiro de Produção e Transmissão de Energia Elétrica - CIGRÊ-Brasil, Praia do Flamengo, Brazil (in Portuguese).
27.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
Hoboken, NJ
.
28.
He
,
M.
,
Cloud
,
C. H.
, and
Byrne
,
J. M.
,
2005
, “
Fundamentals of Fluid Film Journal Bearing Operation and Modeling
,”
Thirty-Fourth Turbomachinery Symposium
,
Houston, TX
,
Sept. 12–15
, pp.
155
175
.
29.
Weaver
,
B.
,
Tsukuda
,
T.
,
Rizvi
,
S. A. A.
,
Schwartz
,
B.
,
Nichols
,
B.
,
Griffin
,
D.
,
Branagan
,
M.
,
Fittro
,
R.
,
Lin
,
Z.
, and
Wood
,
H.
,
2017
, “
Experimental Measurements of Turbomachinery Rotordynamics, Component Performance, and Dynamic Control at ROMAC—A Review
,”
J. Gas Turbine Soc. Jpn.
,
45
(
4
), pp.
235
242
.
30.
Souza
,
G. F. M.
,
Melo
,
I. S.
, and
Michalski
,
M. A. C.
,
2018
, “
Applying Mahalanobis-Taguchi Method to Detect Faults in Rotating Machinery
,”
28th International European Safety and Reliability Conference—ESREL
,
Trondheim, Norway
,
June 17–21
, pp.
1115
1123
.
31.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
,
2nd ed.
,
Springer
,
New York
.
32.
Smith
,
L. I.
,
2002
, “A Tutorial on Principal Components Analysis,” Technical Report, Department of Computer Science, University of Otago, Otago, New Zealand, Report No. OUCS-2002-12.
33.
Pinzón
,
H.
,
Audivet
,
C.
,
Torres
,
M.
,
Alexander
,
J.
, and
Sanjuán
,
M.
,
2017
, “
A Comparative Assessment on Static and Dynamic PCA for Fault Detection in Natural Gas Transmission Systems
,”
ASME
Paper No. ES2017-3613.10.1115/ES2017-3613
34.
Ma
,
J.
, and
Jiang
,
J.
,
2012
, “
Detection and Identification of Faults in NPP Instruments Using Kernel Principal Component Analysis
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032901
.10.1115/1.4004596
35.
Nembhard
,
A. D.
,
Sinha
,
J. K.
,
Pinkerton
,
A. J.
, and
Elbhbah
,
K.
,
2013
, “
Fault Diagnosis of Rotating Machines Using Vibration and Bearing Temperature Measurements
,”
Diagnostyka
,
14
(
3
), pp.
45
51
.
36.
Plante
,
T.
,
Stanley
,
L.
,
Nejadpak
,
A.
, and
Yang
,
C. X.
,
2016
, “
Rotating Machine Fault Detection Using Principal Component Analysis of Vibration Signal
,”
2016 IEEE Autotestcon
(
AUTEST
),
Anaheim, CA
,
Sept. 12–15
, p. 7.10.1109/AUTEST.2016.7589634
37.
Dong
,
S.
,
Sun
,
D.
,
Tang
,
B.
,
Gao
,
Z.
,
Yu
,
W.
, and
Xia
,
M.
,
2014
, “
A Fault Diagnosis Method for Rotating Machinery Based on PCA and Morlet Kernel SVM
,”
Math. Probl. Eng.
,
2014
, p.
293878
.10.1155/2014/293878
38.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
2
(
4
), pp.
433
459
.10.1002/wics.101
39.
Lewis
,
E. E.
,
1994
,
Introduction to Reliability Engineering
,
Wiley
,
Evanston, IL
.
40.
Kececioglu
,
D. B.
, and
Wang
,
W.
,
1998
, “
Parameter Estimation for Mixed-Weibull Distribution
,”
IEEE Annual Reliability and Maintainability Symposium
(
RAMS
),
Anaheim, CA
,
Jan. 19–22
, pp.
247
252
.10.1109/RAMS.1998.653782
You do not currently have access to this content.