Abstract

According to the United Nation's Department of Economic and Social Affairs Population Division, 66% of the world's population will reside in urban areas by 2050, a boost from 30% in 1950. Urbanization has indeed triumphed and has increased the demand for infrastructure systems including metrorail networks, one of the most tangible examples of complex transportation infrastructure systems. A synergistic rapid growth of urban population concurrent with great increases in metrorail use may lead to perturbations in the state of such a system. Taking into consideration of such perturbations and developing appropriate resilience measurements are paramount to the design of sustainable, robust, and resilient systems capable of performing satisfactorily through intentional and/or stochastic disruptions. As such, developing resilience metrics in a structured and appropriate manner is necessary. Using Washington, DC Metro as a case study, this paper examines metrorail network resilience and associated metrics with well-defined relationships to vulnerability and tied to efficiency. This examination includes developing a metro rail model in a graph form and obtaining its basic features by network topology analysis. The analytical work demonstrates that the Washington, DC Metro with its 91 stations and 140 links is a small-world network with the presence of a scale-free phenomenon and of a high level of vulnerability in the case of disruptive events. Evaluation of the efficiency and vulnerability of a metrorail network after disruption requires the consideration of two primary failure events, i.e., the failure of a metro station and the failure of a metro segment between stations. Vulnerability evaluation identifies the most critical stations and rail segments as illustrated using the Washington, DC Metro network. Such an assessment offers a logical basis to enhance system resilience and develop postfailure recovery strategies.

References

References
1.
Pollalis
,
S.
,
Georgoulias
,
A.
,
Ramos
,
S.
, and
Schodek
,
D.
,
2012
, “
Introduction: Sustainability—A Broad Perspective
.,”
Infrastructure Sustainability and Design
,
Routledge
,
New York
, p.
1
.
2.
Lederer
,
E.
,
2013
, “
UN Predicts Near Doubling of City Dwellers by 2050
,” The San Diego Union Tribune, San Diego, CA, accessed Dec. 10, 2013, http://www.sandiegouniontribune.com/sdut-un-predicts-near-doubling-of-city-dwellers-by-2050-2013dec09-story.html
3.
UITP
,
2015
, “
World Metro Figures
,” International Association of Public Transport, Brussels, Belgium, accessed Oct. 19, 2017, http://www.uitp.org/sites/default/files/cck-focus-papers-files/UITP-Statistic%20Brief-Metro-A4-WEB_0.pdf
4.
CNN
,
2017
, “Amtrak Train Crash,” Cable News Network, Atlanta, GA, Dec. 19, 2017, https://www.cnn.com/2017/12/19/us/amtrak-derailment-washington/index.html
5.
FEMA
,
2013
, “
Mitigation Assessment Team Report: Hurricane Sandy in New Jersey and New York, Building Performance Observations, Recommendations, and Technical Guidance
,” Federal Emergency Management Agency, New York, Report No.
FEMA P-942
.
6.
Mu
,
X. Q.
,
2011
, “Two Subway Trains Collide in Shanghai, Over 270 Injured,”
Xinhuanews
,
Beijing, China
.
7.
NTSB,
2010
, “
NTSB Railroad Accident Report: Collision of Two Washington Metropolitan Area Transit Authority Metrorail Trains Near Fort Totten Station
,”
National Transportation Safety System Board,
Washington, DC.
8.
PPD,
2013
, “
Critical Infrastructure Security and Resilience
,” Presidential Policy Directive, Washington, DC, Apr. 18, 2018, https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
9.
Ayyub
,
B. M.
,
2015
, “
Practical Resilience Metrics for Planning, Design, and Decision Making
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
1
(
3
), p.
04015008
.10.1061/AJRUA6.0000826
10.
Derrible
,
S.
, and
Kennedy
,
C.
,
2010
, “
The Complexity and Robustness of Metro Networks
,”
Phys. A
,
389
(
17
), pp.
3678
3691
.10.1016/j.physa.2010.04.008
11.
Newman
,
M. E. J.
,
2010
, “
Mathematics of Networks
.,”
Networks an Introduction
,
Oxford University Press
,
New York
, pp.
99
166
.
12.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Collective Dynamics of ‘Small-World’ Networks
,”
Nature
,
393
(
6684
), pp.
440
442
.10.1038/30918
13.
Sen
,
P.
,
Dasgupta
,
A.
,
Sreeam
,
P.
,
Mukherjee
,
G.
, and
Manna
,
S. S.
,
2003
, “
Small-World Properties of the Indian Railway Network
,”
Phys. Rev.
,
E67
, p.
036106
.10.1103/PhysRevE.67.036106
14.
Latora
,
V.
, and
Marchiori
,
M.
,
2002
, “
Is the Boston Subway a Small-World Network?
,”
Phys. A
,
314
(
1–4
), pp.
109
113
.10.1016/S0378-4371(02)01089-0
15.
Sienkiewicz
,
J.
, and
Holyst
,
J. A.
,
2005
, “
Statistical Analysis of 22 Public Transport Networks in Poland
,”
Phys. Rev.
,
E72
, p.
046127
.10.1103/PhysRevE.72.046127
16.
Derrible
,
S.
, and
Kennedy
,
C.
,
2009
, “
Network Analysis of World Subway Systems Using Updated Graph Theory
,”
Transp. Res. Rec.
,
2112
(
1
), pp.
17
25
.10.3141/2112-03
17.
Háznagy
,
A.
,
Fi
,
I.
,
London
,
A.
, and
Nemeth
,
T.
,
2015
, “
Complex Network Analysis of Public Transportation Networks: A Comprehensive Study
,”
International Conference on Models and Technologies for Intelligent Transportation Systems
(
MT-ITS
), Budapest, Hungary, June 3–5, pp.
371
378
.10.1109/MTITS.2015.7223282
18.
Wu
,
X. T.
,
Tse
,
C. K.
,
Dong
,
H. R.
,
Ho
,
I. W. H.
, and
Lau
,
F. C. M.
,
2016
, “
A Network Analysis of World's Metro Systems
,”
International Symposium on Nonlinear Theory and Its Applications
(
NOLTA
), Yugawara, Japan, Nov. 27–30, pp.
606
609
.
19.
Wang
,
X.
,
Koç
,
Y.
,
Derrible
,
S.
,
Ahmad
,
S. N.
, and
Kooij
,
R. E.
,
2015
, “
Quantifying the Robustness of Metro Networks
,”
Sixth International Symposium on Transportation Network Reliability
, Nara, Japan, Aug. 2–3.
20.
Tierney
,
K.
, and
Bruneau
,
M.
,
2007
, “
Conceptualized and Measuring Resilience
,” TR News 250, Transportation Research Board (TRB) Magazine, Washington, DC , accessed Apr. 8, 2018, http://onlinepubs.trb.org/onlinepubs/trnews/trnews250_p14-17.pdf
21.
Zhang
,
D.
,
Du
,
F.
,
Huang
,
H.
,
Zhang
,
F.
,
Ayyub
,
B. M.
, and
Beer
,
M.
,
2017
, “
Resiliency Assessment Model of Urban Rail Transit Networks: Shanghai Metro as an Example
,”
Saf. Sci.
, 106, pp. 230–243.10.1016/j.ssci.2018.03.023
22.
WMATA Board of Directors,
2018
, “
Washington, DC Metro Fisical Year (FY) Budget
,” Metropolitan Area Transit Authority, Washington, DC, accessed Oct. 19, 2018, https://www.wmata.com/about/records/public_docs/upload/Metro_FY2018_Proposed_Budget_15Dec16_v4.pdf
23.
Von Ferber
,
C.
,
Holovatch
,
T.
,
Holovatch
,
Y.
, and
Palchykov
,
V.
,
2009
, “
Public Transport Networks: Empirical Analysis and Modeling
,”
Eur. Phys. J. B
,
68
(
2
), pp.
261
275
.10.1140/epjb/e2009-00090-x
24.
Zhang
,
J.
,
Zhao
,
M.
,
Liu
,
H.
, and
Xu
,
X.
,
2013
, “
Networked Characteristics of the Urban Rail Transit Networks
,”
Phys. A
,
392
(
6
), pp.
1538
1546
.10.1016/j.physa.2012.11.036
25.
Yook
,
S. H.
,
Jeong
,
H.
,
Barabási
,
A.-L.
, and
Tu
,
Y.
,
2001
, “
Weighted Evolving Networks
,”
Phys. Rev. Lett.
,
86
(
25
), pp.
5835
5838
.10.1103/PhysRevLett.86.5835
26.
Newman
,
M. E. J.
,
2004
, “
Analysis of Weighted Networks
,”
Phys. Rev. Lett.
,
70
(
5 Pt. 2
), p.
056131
.10.1103/PhysRevE.70.056131
27.
Bondy
,
J. A.
, and
Murty
,
U. S. R.
,
1976
, “
Graphs and Subgraphs
,”
Graph Theory With Applications
,
The Macmillan Press
,
New York
, p.
12
.
28.
Costa
,
L. D. F.
,
Rodrigues
,
F. A.
,
Travieso
,
G.
, and
Villas Boas
,
P. R.
,
2007
, “
Characterization of Complex Networks: A Survey of Measurements
,”
Adv. Phys.
,
56
(
1
), pp.
167
242
.10.1080/00018730601170527
29.
Hartmann
,
T.
,
Kappes
,
A.
, and
Wagner
,
D.
,
2016
, “
Clustering Evolving Networks
,”
Algorithm Engineering
(Lecture Notes in Computer Science, Vol. 9220), Springer, Cham, Switzerrland.10.1007/978-3-319-49487-6_9
30.
Ostroumova Prokhorenkova
,
L.
, and
Samosvat
,
E.
,
2014
,
Global Clustering Coefficient in Scale-Free Networks
(
Lecture Notes in Computer Science
, Vol.
882
),
Springer, New York
, pp.
47
58
.
31.
Latora
,
V.
, and
Marchiori
,
M.
,
2001
, “
Efficient Behavior of Small-World Networks
,”
Phys. Rev. Lett.
,
87
(
19
), p.
198701
.10.17877/DE290R-11359
32.
Floyd
,
R. W.
,
1962
, “
Algorithm 97 (Shortest Path)
,”
Commun. ACM
,
5
(
6
), p.
345
.10.1145/367766.368168
33.
Sole
,
R. V.
, and
Valverde
,
S.
,
2004
,
Information Theory of Complex Networks: On Evolution and Architectural Constraints
(Lecture Notes in Physics, Vol.
650
),
Springer
,
Berlin
, pp.
189
207
.
34.
Barabasi
,
A. L.
,
2014
, “Network Science”, Random Network, creative commons: CC BY-NC-SA 2.0. PDF V32, 08.09.2014, http://barabasi.com/f/624.pdf
35.
Barabasi
,
A. L.
,
2016
, “
Network Science
.,”
Random Networks
,
Cambridge University Press
,
UK
.
36.
Barabasi
,
A. L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Science
,
286
(
5439
), pp.
509
512
.10.1126/science.286.5439.509
37.
Albert
,
R.
,
Jeong
,
H.
, and
Barabasi
,
A. L.
,
2000
, “
Error and Attack Tolerance of Complex Networks
,”
Nature
,
406
(
6794
), pp.
378
382
.10.1038/35019019
38.
Crucitti
,
P.
,
Latora
,
V.
, and
Marchioro
,
M.
,
2004
, “Error and Attack Tolerance of Complex Networks,”
Physica A
,
340
, pp. 388–394.10.1016/j.physa.2004.04.031
39.
Bruneau
,
M.
,
Chang
,
S. E.
,
Eguchi
,
R. T.
,
Lee
,
G. C.
,
O'Rourke
,
T. D.
,
Reinhorn
,
A. M.
,
Shinozuka
,
M.
,
Tierney
,
K.
,
Wallace
,
W. A.
, and
von Winterfeldt
,
D.
,
2003
, “
A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities
,”
Earthquake Spectra
,
19
(
4
), pp.
733
752
.10.1193/1.1623497
40.
Bruneau
,
M.
, and
Reinhorn
,
A.
,
2007
, “
Exploring the Concept of Seismic Resilience for Acute Care Facilities
,”
Earthquake Spectra
,
23
(
1
), pp.
41
62
.10.1193/1.2431396
41.
Henry
,
D.
, and
Ramirez-Marquez
,
J. E.
,
2012
, “
Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time
,”
Reliab. Eng. Syst. Saf.
,
99
, pp.
114
122
.10.1016/j.ress.2011.09.002
You do not currently have access to this content.