Abstract

The computation of the inference corresponds to an NP-hard problem even for a single connected credal network. The novel concept of pseudo networks is proposed as an alternative to reduce the computational cost of probabilistic inference in credal networks and overcome the computational cost of existing methods. The method allows identifying the combination of intervals that optimizes the probability values of each state of the queried variable from the credal network. In the case of no evidence, the exact probability bounds of the query variable are calculated. When new evidence is inserted into the network, the outer and inner approximations of the query variable are computed by means of the marginalization of the joint probability distributions of the pseudo networks. The applicability of the proposed methodology is shown by solving numerical case studies.

References

References
1.
Pearl
,
J.
,
1982
, “
Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach
,”
AAAI National Conference on AI
, Pittsburgh, PA, pp.
133
136
.https://aaai.org/Papers/AAAI/1982/AAAI82-032.pdf
2.
Korb
,
K. B.
, and
Nicholson
,
A. E.
,
2004
,
Bayesian Artificial Intelligence
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
3.
Wang
,
H.
,
Yajima
,
A.
,
Liang
,
R.
, and
Castaneda
,
H.
,
2015
, “
Bayesian Modeling of External Corrosion in Underground Pipelines Based on the Integration of Markov Chain Monte Carlo Techniques and Clustered Inspection Data
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
30
(
4
), pp.
300
316
.10.1111/mice.12096
4.
Sun
,
H.
, and
Betti
,
R.
,
2015
, “
A Hybrid Optimization Algorithm With Bayesian Inference for Probabilistic Model Updating
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
30
(
8
), pp.
602
619
.10.1111/mice.12142
5.
Castillo
,
E.
,
Grande
,
Z.
, and
Calvino
,
A.
,
2016
, “
Bayesian Networks-Based Probabilistic Safety Analysis for Railway Lines
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
31
(
9
), pp.
681
700
.10.1111/mice.12195
6.
Estrada-Lugo
,
H. D.
,
Patelli
,
E.
,
de Angelis
,
M.
, and
Raj
,
D. D.
,
2018
, “
Bayesian Networks With Imprecise Datasets: Application to Oscillating Water Column
,”
European Safety and Reliability Conference
, Trondheim, Norway, June 15, pp.
2611
2618
.
7.
Bobbio
,
A.
,
Portinale
,
L.
,
Minichino
,
M.
, and
Ciancamerla
,
E.
,
1999
,
Comparing Fault Trees and Bayesian Networks for Dependability Analysis
(Lecture Notes in Computer Science, Vol. 1698),
Springer
,
Berlin
, pp.
310
322
.
8.
Jensen
,
F. V.
, and
Nielsen
,
T. D.
,
2007
,
Bayesian Networks and Decision Graphs
,
Springer
,
New York
.
9.
Straub
,
D.
, and
Kiureghian
,
A. D.
,
2010
, “
Bayesian Network Enhanced With Structural Reliability Methods: Methodology
,”
ASCE J. Eng. Mech.
,
136
(
10
), pp.
1248
1258
.10.1061/(ASCE)EM.1943-7889.0000173
10.
Tolo
,
S.
,
Patelli
,
E.
, and
Beer
,
M.
,
2018
, “
An Open Toolbox for the Reduction, Inference Computation and Sensitivity Analysis of Credal Networks
,”
Adv. Eng. Software
,
115
, pp.
126
148
.10.1016/j.advengsoft.2017.09.003
11.
Beer
,
M.
, and
Patelli
,
E.
,
2015
, “
Editorial: Engineering Analysis With Vague and Imprecise Information
,”
Struct. Saf.
,
52
(Pt. B), p.
143
.10.1016/j.strusafe.2014.11.001
12.
Ferreira Da Rocha
,
J. C.
,
Cozman
,
F. G.
, and
Polpo De Campos
,
C.
,
2003
, “
Inference in Polytrees With Sets of Probabilities
,”
19th Conference on Uncertainty in Artificial Intelligence
, Acapulco, Mexico, Aug. 7–10, pp.
217
224
.https://arxiv.org/ftp/arxiv/papers/1212/1212.2458.pdf
13.
Cano
,
A.
,
Gómez
,
M.
,
Moral
,
S.
, and
Abellán
,
J.
,
2007
, “
Hill-Climbing and Branch-and-Bound Algorithms for Exact and Approximate Inference in Credal Networks
,”
Int. J. Approximate Reasoning
,
44
(
3
), pp.
261
280
.10.1016/j.ijar.2006.07.020
14.
Antonucci
,
A.
, and
Cuzzolin
,
F.
,
2010
,
Credal Sets Approximation by Lower Probabilities: Application to Credal Networks
(Lecture Notes in Computer Science, Vol. 6178), Springer, Berlin, pp.
716
725
.
15.
Pfeiffer
,
P. E.
, and
Schum
,
D. A.
,
1973
,
Introduction to Applied Probability
,
Academic Press
,
New York
.
16.
Tolo
,
S.
,
Patelli
,
E.
, and
Beer
,
M.
,
2017
, “
Robust Vulnerability Analysis of Nuclear Facilities Subject to External Hazards
,”
Stochastic Environ. Res. Risk Assess.
,
31
(
10
), pp.
2733
2756
.10.1007/s00477-016-1360-1
17.
Cozman
,
F. G.
,
2000
, “
Credal Networks
,”
Artif. Intell.
,
120
(
2
), pp.
199
233
.10.1016/S0004-3702(00)00029-1
18.
Chrisman
,
L.
,
1996
, “
Propagation of 2-Monotone Lower Probabilities on an Undirected Graph
,”
12th Conference on Uncertainty in Artificial Intelligence
, Portland, OR, Aug. 1–4, pp.
178
186
.
19.
Chrisman
,
L.
,
1996
, “
Independence With Lower and Upper Probabilities
,”
12th Conference on Uncertainty in Artificial Intelligence
, Portland, OR, Aug. 1–4, pp.
169
177
.https://pdfs.semanticscholar.org/3de0/41f5a26c4e2b77a5bc1ddad0c02fe95466e5.pdf
20.
Ferson
,
S.
,
Ginzburg
,
L.
, and
Akçakaya
,
R.
,
1996
, “
Whereof One Cannot Speak: When Input Distributions are Unknown
,” Risk Analysis, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.7668&rep=rep1&type=pdf
21.
Augustin
,
T.
,
Coolen
,
F. P. A.
,
de Cooman
,
G.
, and
Troffaes
,
M. C. M.
,
2014
,
Introduction to Imprecise Probabilities
,
Wiley
,
West Sussex, UK
.
22.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
1st ed.
,
Chapman and Hall
,
London
.
23.
Tessem
,
B.
,
1992
, “
Interval Probability Propagation
,”
Int. J. Approximate Reasoning
,
7
(
3–4
), pp.
95
120
.10.1016/0888-613X(92)90006-L
24.
De Campos
,
C. P.
, and
Cozman
,
F. G.
,
2004
, “
Inference in Credal Networks Using Multilinear Programming
,”
Second Starting AI Researcher Symposium
, Valencia, Spain, pp.
50
61
.https://ipg.idsia.ch/preprints/decampos2004a.pdf
25.
Tolo
,
S.
,
Patelli
,
E.
, and
Beer
,
M.
,
2018
, “
An Inference Method for Bayesian Networks With Probability Intervals
,”
Joint ICVRAM ISUMA UNCERTAINTIES Conference
, Florianópolis, SC, Brazil, Apr. 8–11, Paper No.
021
.https://www.researchgate.net/publication/324475863_An_Inference_Method_for_Bayesian_Networks_with_Probability_Intervals
26.
Murphy
,
K. P.
,
2001
, “
The Bayes Net Toolbox for Matlab
,”
Comput. Sci. Stat.
,
33
(
2
), pp.
1024
1034
.
27.
Patelli
,
E.
,
Tolo
,
S.
,
George-Williams
,
H.
,
Sadeghi
,
J.
,
Rocchetta
,
R.
,
de Angelis
,
M.
, and
Broggi
,
M.
,
2018
, “
OpenCossan 2.0: An Efficient Computational Toolbox for Risk, Reliability and Resilience Analysis
,”
Joint ICVRAM ISUMA UNCERTAINTIES Conference
, Florianópolis, SC, Brazil, Apr. 8–11, Paper No. 022.https://www.researchgate.net/publication/324331449_OpenCossan_20_an_efficient_computational_toolbox_for_risk_reliability_and_resilience_analysis
28.
Andersen
,
S. K.
,
Olesen
,
K. G.
,
Jensen
,
F. V.
, and
Jensen
,
F.
,
1990
, “
HUGIN*—A Shell for Building Bayesian Belief Universes for Expert Systems
,” Aalborg University, Aalborg, Denmark,
Report
.https://www.researchgate.net/publication/220816331_HUGIN_-_A_Shell_for_Building_Bayesian_Belief_Universes_for_Expert_Systems
29.
Patelli
,
E.
,
2016
,
Handbook of Uncertainty Quantification
(COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantification and Risk Management),
Springer International Publishing
,
Cham
, Switzerland, pp.
1
69
.
30.
Consortium
,
E.
,
2002
, “
Elvira: An Environment for Creating and Using Probabilistic Graphical Models
,”
First European Workshop on Probabilistic Graphical Models
, Cuenca, Spain, Nov. 6–8, pp.
222
230
.
31.
Antonucci
,
A.
,
De Campos
,
C. P.
,
Huber
,
D.
, and
Zaffalon
,
M.
,
2015
, “
Approximate Credal Network Updating by Linear Programming With Applications to Decision Making
,”
Int. J. Approximate Reasoning
,
58
, pp.
25
38
.10.1016/j.ijar.2014.10.003
32.
Wang
,
T.
,
Qu
,
Z.
,
Nichol
,
T.
,
Yang
,
Z.
,
Dimitriu
,
D.
,
Clarke
,
G.
, and
Bowden
,
D.
,
2018
, “
Impacts of Climate Change on Rail Systems: A New Climate Risk Analysis Model
,”
Safety and Reliability—Safe Societies in a Changing World
,
Taylor & Francis Group
,
London
, pp.
2771
2779
.
33.
Aarsland
,
D. W.
, and
Vatn
,
J.
,
2018
, “
Contributors to Successful Safety Level in the Norwegian Railway Sector
,”
Safety and Reliability—Safe Societies in a Changing World
,
Taylor & Francis Group
,
London
, pp.
233
240
.
34.
Committee on Climate Change, and U.S. Transportation Research Board,
2008
,
TRB Special Report 290: The Potential Impacts of Climate Change on U.S. Transportation
,
National Academy of Sciences
,
Washington, DC
.
35.
Melillo
,
J. M.
,
Richmond
,
T. T.
, and
Yohe
,
G. W.
,
2014
,
Climate Change Impacts in the United States: The Third National Climate Assessment
,
United States Global Change Research Program
,
Washington, DC
.
You do not currently have access to this content.