Abstract

Structural reliability methods are nowadays a cornerstone for the design of robustly performing structures, thanks to advancements in modeling and simulation tools. Monte Carlo-based simulation tools have been shown to provide the necessary accuracy and flexibility. While standard Monte Carlo estimation of the probability of failure is not hindered in its applicability by approximations or limiting assumptions, it becomes computationally unfeasible when small failure probability needs to be estimated, especially when the underlying numerical model evaluation is time consuming. In this case, variance reduction techniques are commonly employed, allowing for the estimation of small failure probabilities with a reduced number of samples and model calls. As a competing approach to variance reduction techniques, surrogate models can be used to substitute the computationally expensive model and performance function with an easy to evaluate numerical function calibrated through a supervised learning procedure. Both these tools provide accurate results for structural application. However, particular care should be taken into account when the reliability problems deal with high-dimensional or strongly nonlinear structural performances since the accuracy of the estimate is largely dependent on choices made during the surrogate modeling process. In this work, we compare the performance of the most recent state-of-the-art advance Monte Carlo techniques and surrogate models when applied to strongly nonlinear performance functions. This will provide the analysts with an insight to the issues that could arise in these challenging problems and help to decide with confidence on which tool to select in order to achieve accurate estimation of the failure probabilities within feasible times with their available computational capabilities.

References

References
1.
Koutsourelakis
,
P.
,
Pradlwarter
,
H.
, and
Schuëller
,
G.
,
2004
, “
Reliability of Structures in High Dimensions— Part I: Algorithms and Applications
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
409
417
.10.1016/j.probengmech.2004.05.001
2.
Au
,
S.-K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.10.1016/S0266-8920(01)00019-4
3.
Au
,
S.-K.
, and
Patelli
,
E.
,
2016
, “
Rare Event Simulation in Finite-Infinite Dimensional Space
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
67
77
.10.1016/j.ress.2015.11.012
4.
Au
,
S. K.
, and
Beck
,
J. L.
,
2003
, “
Subset Simulation and Its Application to Seismic Risk Based on Dynamic Analysis
,”
J. Eng. Mech.
,
129
(
8
), pp.
901
917
.10.1061/(ASCE)0733-9399(2003)129:8(901)
5.
Schuëller
,
G.
,
Pradlwarter
,
H.
, and
Koutsourelakis
,
P.
,
2004
, “
A Critical Appraisal of Reliability Estimation Procedures for High Dimensions
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
463
474
.10.1016/j.probengmech.2004.05.004
6.
Pradlwarter
,
H.
,
Pellissetti
,
M.
,
Schenk
,
C.
,
Schuëller
,
G.
,
Kreis
,
A.
,
Fransen
,
S.
,
Calvi
,
A.
, and
Klein
,
M.
,
2005
, “
Realistic and Efficient Reliability Estimation for Aerospace Structures
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1597
1617
.10.1016/j.cma.2004.05.029
7.
Schuëller
,
G.
, and
Pradlwarter
,
H.
,
2007
, “
Benchmark Study on Reliability Estimation in Higher Dimensions of Structural Systems—An Overview
,”
Struct. Saf.
,
29
(
3
), pp.
167
182
.10.1016/j.strusafe.2006.07.010
8.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
9.
Moustapha
,
M.
,
Bourinet
,
J.-M.
,
Guillaume
,
B.
, and
Sudret
,
B.
,
2018
, “
Comparative Study of Kriging and Support Vector Regression for Structural Engineering Applications
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
4
(
2
), p.
04018005
.10.1061/AJRUA6.0000950
10.
Broggi
,
M.
,
Faes
,
M.
,
Patelli
,
E.
,
Govers
,
Y.
,
Moens
,
D.
, and
Beer
,
M.
,
2017
, “
Comparison of Bayesian and Interval Uncertainty Quantification: Application to the Airmod Test Structure
,”
IEEE Symposium Series on Computational Intelligence
(
SSCI
),
Honolulu, HI
,
Nov. 27–Dec. 1
, pp.
1
8
.10.1109/SSCI.2017.8280882
11.
Faes
,
M.
,
Broggi
,
M.
,
Patelli
,
E.
,
Govers
,
Y.
,
Mottershead
,
J.
,
Beer
,
M.
, and
Moens
,
D.
,
2019
, “
A Multivariate Interval Approach for Inverse Uncertainty Quantification With Limited Experimental Data
,”
Mech. Syst. Signal Process.
,
118
, pp.
534
548
.10.1016/j.ymssp.2018.08.050
12.
Viana
,
F. A.
, and
Haftka
,
R. T.
,
2012
, “
Probability of Failure Uncertainty Quantification With Kriging
,”
AIAA
Paper No. 2012-185310.2514/6.2012-1853
13.
Faes
,
M.
,
Broggi
,
M.
,
Beer
,
M.
, and
Moens
,
D.
,
2018
, “
Failure Probability Under Uncertain Surrogate Model Predictions
,”
Joint ICVRAM ISUMA Uncertainties Conference,
Florianopolis, Brazil
,
Apr. 8–11
, Paper No.
19
.
14.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. South. Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.
15.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “
Dace—A Matlab Kriging Toolbox, Version 2.0
,”
Technical University of Denmark
,
Kgs. Lyngby, Denmark
.
16.
Schöbi
,
R.
,
Sudret
,
B.
, and
Marelli
,
S.
,
2017
, “
Rare Event Estimation Using Polynomial-Chaos Kriging
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
3
(
2
), p.
D4016002
.10.1061/AJRUA6.0000870
17.
De Munck
,
M.
,
Moens
,
D.
,
Desmet
,
W.
, and
Vandepitte
,
D.
,
2009
, “
An Efficient Response Surface Based Optimisation Method for Non-Deterministic Harmonic and Transient Dynamic Analysis
,”
Comput. Model. Eng. Sci.
,
47
(
2
), pp.
119
166
.
18.
Campi
,
M. C.
,
Calafiore
,
G.
, and
Garatti
,
S.
,
2009
, “
Interval Predictor Models: Identification and Reliability
,”
Automatica
,
45
(
2
), pp.
382
392
.10.1016/j.automatica.2008.09.004
19.
Crespo
,
L. G.
,
Giesy
,
D. P.
, and
Kenny
,
S. P.
,
2014
, “
Interval Predictor Models With a Formal Characterization of Uncertainty and Reliability
,”
53rd IEEE Annual Conference on Decision and Control
(
CDC
),
Los Angeles, CA
,
Dec. 15–17
, pp.
5991
5996
.10.1109/CDC.2014.7040327
20.
Crespo
,
L. G.
,
Kenny
,
S. P.
, and
Giesy
,
D. P.
,
2016
, “
Interval Predictor Models With a Linear Parameter Dependency
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
2
), p.
021007
.10.1115/1.4032070
21.
Crespo
,
L. G.
,
Kenny
,
S. P.
, and
Giesy
,
D. P.
,
2018
, “
Staircase Predictor Models for Reliability and Risk Analysis
,”
Struct. Saf.
,
75
, pp.
35
44
.10.1016/j.strusafe.2018.05.002
22.
Verhaeghe
,
W.
,
Desmet
,
W.
,
Vandepitte
,
D.
, and
Moens
,
D.
,
2013
, “
Interval Fields to Represent Uncertainty on the Output Side of a Static FE Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
260
(
0
), pp.
50
62
.10.1016/j.cma.2013.03.021
23.
Faes
,
M.
,
Cerneels
,
J.
,
Vandepitte
,
D.
, and
Moens
,
D.
,
2017
, “
Identification and Quantification of Multivariate Interval Uncertainty in Finite Element Models
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
896
920
.10.1016/j.cma.2016.11.023
24.
Faes
,
M.
, and
Moens
,
D.
,
2017
, “
Identification and Quantification of Spatial Interval Uncertainty in Numerical Models
,”
Comput. Struct.
,
192
, pp.
16
33
.10.1016/j.compstruc.2017.07.006
25.
Faes
,
M.
, and
Moens
,
D.
,
2019
, “
Recent Trends in the Modeling and Quantification of Non-Probabilistic Uncertainty
,”
Arch. Comput. Methods Eng.
(epub).
26.
Liu
,
X.
,
Yin
,
L.
,
Hu
,
L.
, and
Zhang
,
Z.
,
2017
, “
An Efficient Reliability Analysis Approach for Structure Based on Probability and Probability Box Models
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
167
181
.10.1007/s00158-017-1659-7
27.
Patelli
,
E.
,
Broggi
,
M.
,
Tolo
,
S.
, and
Sadeghi
,
J.
,
2017
, “
Cossan Software: A Multidisciplinary and Collaborative Software for Uncertainty Quantification
,”
UNCECOMP/2nd ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering
,
Rhodes Island, Greece
,
June 15–17
.
28.
Zhang
,
H.
,
Mullen
,
R. L.
, and
Muhanna
,
R. L.
,
2010
, “
Interval Monte Carlo Methods for Structural Reliability
,”
Struct. Saf.
,
32
(
3
), pp.
183
190
.10.1016/j.strusafe.2010.01.001
29.
Jiang
,
C.
,
Li
,
W.
,
Han
,
X.
,
Liu
,
L.
, and
Le
,
P.
,
2011
, “
Structural Reliability Analysis Based on Random Distributions With Interval Parameters
,”
Comput. Struct.
,
89
(
23
), pp.
2292
2302
.10.1016/j.compstruc.2011.08.006
30.
Patelli
,
E.
,
Panayirci
,
H. M.
,
Broggi
,
M.
,
Goller
,
B.
,
Beaurepaire
,
P.
,
Pradlwarter
,
H. J.
, and
Schuëller
,
G. I.
,
2012
, “
General Purpose Software for Efficient Uncertainty Management of Large Finite Element Models
,”
Finite Elem. Anal. Des.
,
51
, pp.
31
48
.10.1016/j.finel.2011.11.003
31.
de Angelis
,
M.
,
Patelli
,
E.
, and
Beer
,
M.
,
2015
, “
Advanced Line Sampling for Efficient Robust Reliability Analysis
,”
Struct. Saf.
,
52
, pp.
170
182
.10.1016/j.strusafe.2014.10.002
32.
De Angelis
,
M.
,
Patelli
,
E.
, and
Beer
,
M.
,
2013
, “
An Efficient Strategy for Computing Interval Expectations of Risk
,” Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures,
Taylor & Francis
,
London
.
You do not currently have access to this content.