Abstract

In this contribution, the optimization of systems under uncertainty is considered. The possibilistic evaluation of the fuzzy-valued constraints and the adoption of a multicriteria decision making technique for the fuzzy-valued objective function enable a meaningful solution to general fuzzy-valued optimization problems. The presented approach is universally applicable, which is demonstrated by reformulating and solving the linear quadratic regulator problem for fuzzy-valued system matrices and initial conditions.

References

References
1.
Bestle
,
D.
,
2013
,
Analyse und Optimierung von Mehrkörpersystemen: Grundlagen und rechnergestützte Methoden
,
Springer-Verlag
,
Berlin
.
2.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
,
1996
,
Robust and Optimal Control
, Vol.
40
,
Prentice-Hall, Upper Saddle River
,
NJ
.
3.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.10.1016/S0019-9958(65)90241-X
4.
Hanss
,
M.
,
2010
,
Applied Fuzzy Arithmetic—An Introduction With Engineering Applications
, 2nd ed.,
Springer
,
Berlin
.
5.
Ramík
,
J.
, and
Ímánek
,
J.
,
1985
, “
Inequality Relation Between Fuzzy Numbers and Its Use in Fuzzy Optimization
,”
Fuzzy Sets Syst.
,
16
(
2
), pp.
123
138
.10.1016/S0165-0114(85)80013-0
6.
Bellman
,
R. E.
, and
Zadeh
,
L. A.
,
1970
, “
Decision-Making in a Fuzzy Environment
,”
Manage. Sci.
,
17
(
4
), pp.
B-141
B-273
.10.1287/mnsc.17.4.B141
7.
Sahinidis
,
N. V.
,
2004
, “
Optimization Under Uncertainty: State-of-the-Art and Opportunities
,”
Comput. Chem. Eng.
,
28
(
6–7
), pp.
971
983
.10.1016/j.compchemeng.2003.09.017
8.
Tanaka
,
H.
,
Ichihashi
,
H.
, and
Asai
,
K.
,
1985
, “
Fuzzy Decision in Linear Programming Problems With Trapezoid Fuzzy Parameters
,”
Management Decision Support Systems Using Fuzzy Sets and Possibility Theory
,
J. Kacprzyk
and
R.
Yager
, eds.,
Verlag TÜV Rheinland
,
Cologne, Germany
, pp.
146
155
.
9.
Luhandju
,
M. K.
,
1989
, “
Fuzzy Optimization: An Appraisal
,”
Fuzzy Sets Syst.
,
30
(
3
), pp.
257
282
.10.1016/0165-0114(89)90019-5
10.
Zimmermann
,
H.-J.
,
2001
,
Fuzzy Set Theory—and Its Applications
,
Springer, Dordrecht
,
The Netherlands
.
11.
Liu
,
B.
,
2002
,
Theory and Practice of Uncertain Programming
,
Springer
,
Berlin
.
12.
Kacprzyk
,
J.
,
2010
,
Studies in Fuzziness and Soft Computing
, Vol.
254
, Springer, Berlin.
13.
Lodwick
,
W. A.
, and
Thipwiwatpotjana
,
P.
,
2017
,
Flexible and Generalized Uncertainty Optimization: Theory and Methods
, Vol.
696
,
Springer
, Berlin.
14.
Beck
,
A. T.
,
Gomes
,
W. J.
, and
Bazán
,
F. A.
,
2012
, “
On the Robustness of Structural Risk Optimization With Respect to Epistemic Uncertainties
,”
Int. J. Uncertainty Quantif.
,
2
(
1
), pp.
1
20
.10.1615/Int.J.UncertaintyQuantification.v2.i1.20
15.
Inuiguchi
,
M.
,
2012
, “
Robust Optimization by Fuzzy Linear Programming
,”
Managing Safety of Heterogeneous Systems
,
Springer
,
Berlin
, pp.
219
239
.
16.
Zadeh
,
L.
,
1978
, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
1
(
1
), pp.
3
28
.10.1016/0165-0114(78)90029-5
17.
Klir
,
G.
, and
Wierman
,
M.
,
1999
,
Uncertainty-Based Information: Elements of Generalized Information Theory
, Vol.
15
,
Springer Science & Business Media
,
Berlin
.
18.
Dubois
,
D.
, and
Prade
,
H.
,
1988
,
Possibility Theory: An Approach to Computerized Processing of Uncertainty
,
Plenum Press
,
New York
.
19.
Liu
,
B.
,
2006
, “
A Survey of Credibility Theory
,”
Fuzzy Optim. Decis. Making
,
5
(
4
), pp.
387
408
.10.1007/s10700-006-0016-x
20.
Zadeh
,
L. A.
,
1975
, “
The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I
,”
Inf. Sci.
,
8
(
3
), pp.
199
249
.10.1016/0020-0255(75)90036-5
21.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall
,
London
.
22.
Dubois
,
D.
, and
Prade
,
H.
,
1992
, “
When Upper Probabilities are Possibility Measures
,”
Fuzzy Sets Syst.
,
49
(
1
), pp.
65
74
.10.1016/0165-0114(92)90110-P
23.
Masson
,
M.-H.
, and
Denœux
,
T.
,
2006
, “
Inferring a Possibility Distribution From Empirical Data
,”
Fuzzy Sets Syst.
,
157
(
3
), pp.
319
340
.10.1016/j.fss.2005.07.007
24.
Tang
,
J.
,
Wang
,
D.
,
Fung
,
R. Y.
, and
Yung
,
K.-L.
,
2004
, “
Understanding of Fuzzy Optimization: Theories and Methods
,”
J. Syst. Sci. Complexity
,
17
(
1
), pp.
117
136
.
25.
Wang
,
X.
, and
Kerre
,
E. E.
,
2001
, “
Reasonable Properties for the Ordering of Fuzzy Quantities (I)
,”
Fuzzy Sets Syst.
,
118
(
3
), pp.
375
385
.10.1016/S0165-0114(99)00062-7
26.
Wang
,
X.
, and
Kerre
,
E. E.
,
2001
, “
Reasonable Properties for the Ordering of Fuzzy Quantities (II)
,”
Fuzzy Sets Syst.
,
118
(
3
), pp.
387
405
.10.1016/S0165-0114(99)00063-9
27.
Dubois
,
D.
, and
Prade
,
H.
,
1983
, “
Ranking Fuzzy Numbers in the Setting of Possibility Theory
,”
Inf. Sci.
,
30
(
3
), pp.
183
224
.10.1016/0020-0255(83)90025-7
28.
Bestle
,
D.
,
1994
,
Analyse und Optimierung von Mehrkörpersystemen
,
Springer
,
Berlin
, (in German).
29.
Jamison
,
K. D.
, and
Lodwick
,
W. A.
,
1999
, “
Minimizing Unconstrained Fuzzy Functions
,”
Fuzzy Sets Syst.
,
103
(
3
), pp.
457
464
.10.1016/S0165-0114(97)00183-8
30.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control: Analysis and Design
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
31.
Hose
,
D.
,
Mäck
,
M.
, and
Hanss
,
M.
,
2018
, “
A Possibilistic Approach to the Optimization of Uncertain Systems
,”
Third International Conference on Vulnerability and Risk Analysis and Management, and the Seventh International Symposium on Uncertainty Modeling and Analysis
, Florianópolis, Brazil, Apr. 8–11, Paper No.
1
.
You do not currently have access to this content.