This paper presents a procedure for the reliability analysis of a multistage axial compressor regarding blade-specific roughness effects, based on the survival signature approach. As a result, a time-dependent evolution of the system reliability is obtained along with a prioritization technique for monitoring and regeneration of the rough blade rows by capturing the most critical system components. For this purpose, a one-dimensional flow model is developed and utilized to evaluate the aerodynamic influences of the blade-specific roughness on the system performance parameters, namely the overall pressure ratio and the isentropic efficiency. In order to achieve transparency and high numerical efficiency for time-dependent analyses in practice, the physics-based compressor model is translated into an illustrative, function-based system model. This system model is established by conducting a Monte Carlo simulation along with a variance-based global sensitivity analysis, with the input variables being the row-specific blade roughness. Based on the system model, the roughness impact in different blade-rows is ranked by the relative importance (RI) index, and the corresponding time-dependent reliability of the compressor system in terms of pressure ratio and efficiency is estimated through its survival function. Furthermore, uncertainties in the roughness-induced failure rates of the components are modeled using imprecise probabilities. Consequently, bounds on the reliability function and the importance indices for the blade-surface roughness in each blade row are captured, which enhances the decision-making process for maintenance activities under uncertainty.

References

References
1.
Back
,
S. C.
,
Sohn
,
J. H.
, and
Song
,
S. J.
,
2010
, “
Impact of Surface Roughness on Compressor Cascade Performance
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
064502
.
2.
Schwerdt
,
L.
,
Hauptmann
,
T.
,
Kunin
,
A.
,
Seume
,
J. R.
,
Wallaschek
,
J.
,
Wriggers
,
P.
,
Panning-von Scheidt
,
L.
, and
Löhnert
,
S.
,
2017
, “
Aerodynamical and Structural Analysis of Operationally Used Turbine Blades
,”
Procedia CIRP
,
59
, pp.
77
82
.
3.
Caguiat
,
D. E.
,
Zipkin
,
D. M.
, and
Patterson
,
J. S.
,
2002
, “
Compressor Fouling Testing on Rolls Royce/Allison 501-K17 and General Electric LM2500 Gas Turbine Engines
,”
ASME
Paper No. GT2002-30262.
4.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2005
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME
Paper No. GT2005-68701.
5.
Ghenaiet
,
A.
,
Elder
,
R.
, and
Tan
,
S.
,
2001
, “
Particles Trajectories Through an Axial Fan and Performance Degradation Due to Sand Ingestion
,”
ASME
Paper No. 2001-GT-0497.
6.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
7.
Dunn
,
M. G.
,
Baran
,
A. J.
, and
Miatech
,
J.
,
1994
, “
Operation of Gas Turbine Engines in Volcanic Ash Clouds
,”
ASME
Paper No. 94-GT-170.
8.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME
Paper No. 2001-GT-0163.
9.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
10.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Estimation of the Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012604
.
11.
Millsaps
,
K. T.
,
Baker
,
J.
, and
Patterson
,
J. S.
,
2004
, “
Detection and Localization of Fouling in a Gas Turbine Compressor From Aerothermodynamic Measurements
,”
ASME
Paper No. GT2004-54173.
12.
Levine
,
P.
, and
Angello
,
L.
,
2005
, “
Axial Compressor Performance Maintenance
,”
ASME
Paper No. GT2005-68014.
13.
Syverud
,
E.
, and
Bakken
,
L. E.
,
2006
, “
The Impact of Surface Roughness on Axial Compressor Performance Deterioration
,”
ASME
Paper No. GT2006-90004.
14.
Chen
,
S.
,
Sun
,
S.
,
Xu
,
H.
,
Zhang
,
L.
,
Wang
,
S.
, and
Zhang
,
T.
,
2013
, “
Influence of Local Surface Roughness of Rotor Blade on Performance of an Axial Compressor Stage
,”
ASME
Paper No. GT2013-94816.
15.
Kong
,
D.
,
Jeong
,
H.
, and
Song
,
S. J.
,
2017
, “
Effects of Surface Roughness on Evolutions of Loss and Deviation in a Linear Compressor Cascade
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5329
5335
.
16.
Chotalia
,
R. J.
, and
Alone
,
D. B.
,
2017
, “
Numerical Investigations on Influence of Uniform Blade Surface Roughness on the Performance Characteristics of a Transonic Axial Flow Compressor Stage
,”
ASME
Paper No. GTINDIA2017-4594.
17.
Sun
,
H.
,
Wang
,
M.
,
Wang
,
Z.
, and
Ma
,
J.
,
2018
, “
Numerical Simulation of Non-Uniform Roughness Distribution on Compressor Performance
,”
J. Mar. Sci. Technol.
,
23
(
2
), pp.
389
397
.
18.
Gilge
,
P.
,
Seume
,
J. R.
, and
Mulleners
,
K.
,
2018
, “
Analysis of Local Roughness Combinations on the Aerodynamic Properties of a Compressor Blade
,”
AIAA
Paper No. 2018-0345.
19.
Venturini
,
M.
, and
Puggina
,
N.
,
2012
, “
Prediction Reliability of a Statistical Methodology for Gas Turbine Prognostics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101601
.
20.
Watson
,
M. J.
,
Smith
,
M. J.
,
Kloda
,
J.
,
Byington
,
C. S.
, and
Semega
,
K.
,
2011
, “
Prognostics and Health Management of Aircraft Engine EMA Systems
,”
ASME
Paper No. GT2011-46537.
21.
Palmé
,
T.
,
Breuhaus
,
P.
,
Assadi
,
M.
,
Klein
,
A.
, and
Kim
,
M.
,
2011
, “
Early Warning of Gas Turbine Failure by Nonlinear Feature Extraction Using an Auto-Associative Neural Network Approach
,”
ASME
Paper No. GT2011-45991.
22.
Li
,
Y.
, and
Nilkitsaranont
,
P.
,
2009
, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
Appl. Energy
,
86
(
10
), pp.
2152
2161
.
23.
Coolen
,
F. P.
, and
Coolen-Maturi
,
T.
,
2013
, “
Generalizing the Signature to Systems With Multiple Types of Components
,”
Complex Systems and Dependability
,
Springer
, Berlin, pp.
115
130
.
24.
Miller
,
R. G.
, Jr
,
2011
,
Survival Analysis
, Vol.
66
,
Wiley
, Hoboken, NJ.
25.
Samaniego
,
F. J.
,
2007
,
System Signatures and Their Applications in Engineering Reliability
, Vol.
110
,
Springer Science & Business Media
, Boston, MA.
26.
Coolen
,
F. P.
, and
Coolen-Maturi
,
T.
,
2015
, “
Modelling Uncertain Aspects of System Dependability With Survival Signatures
,”
Dependability Problems of Complex Information Systems
,
Springer
, Cham, Switzerland, pp.
19
34
.
27.
Aslett
,
L. J.
,
Coolen
,
F. P.
, and
Wilson
,
S. P.
,
2015
, “
Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature
,”
Risk Anal.
,
35
(
9
), pp.
1640
1651
.
28.
Feng
,
G.
,
Patelli
,
E.
,
Beer
,
M.
, and
Coolen
,
F. P.
,
2016
, “
Imprecise System Reliability and Component Importance Based on Survival Signature
,”
Reliab. Eng. Syst. Saf.
,
150
, pp.
116
125
.
29.
Möller
,
B.
, and
Beer
,
M.
,
2008
, “
Engineering Computation Under Uncertainty—Capabilities of Non-Traditional Models
,”
Comput. Struct.
,
86
(
10
), pp.
1024
1041
.
30.
Beer
,
M.
,
Ferson
,
S.
, and
Kreinovich
,
V.
,
2013
, “
Imprecise Probabilities in Engineering Analyses
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
4
29
.
31.
Beer
,
M.
,
Zhang
,
Y.
,
Quek
,
S. T.
, and
Phoon
,
K. K.
,
2013
, “
Reliability Analysis With Scarce Information: Comparing Alternative Approaches in a Geotechnical Engineering Context
,”
Struct. Saf.
,
41
, pp.
1
10
.
32.
Beer
,
M.
, and
Kreinovich
,
V.
,
2013
, “
Interval or Moments: Which Carry More Information?
,”
Soft Comput.
,
17
(
8
), pp.
1319
1327
.
33.
Ferson
,
S.
,
Hajagos
,
J.
, and
Tucker
,
W. T.
,
2004
, “
Probability Bounds Analysis Is a Global Sensitivity Analysis
,”
International Conference on Sensitivity Analysis of Model Output (SAMO)
, Santa Fe, NM, Mar. 8–11, pp. 211–220.
34.
Ferson
,
S.
, and
Hajagos
,
J. G.
,
2004
, “
Arithmetic With Uncertain Numbers: Rigorous and (Often) Best Possible Answers
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
135
152
.
35.
Ferson
,
S.
,
Joslyn
,
C. A.
,
Helton
,
J. C.
,
Oberkampf
,
W. L.
, and
Sentz
,
K.
,
2004
, “
Summary From the Epistemic Uncertainty Workshop: Consensus Amid Diversity
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
355
369
.
36.
Johnson
,
M. S.
,
1991
, “
One-Dimensional, Stage-by-Stage, Axial Compressor Performance Model
,”
ASME
Paper No. 91-GT-192.
37.
McBride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
,
1993
, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,” NASA Lewis Research Center, Cleveland, OH, Report No. TM-4513.
38.
Koch
,
C.
, and
Smith
,
L.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
,
98
(
3
), pp.
411
424
.
39.
Moe
,
G.
,
1984
, “
Influence of Surface Roughness on Compressor Blades at High Reynolds Number in a Two-Dimensional Cascade
,” Technical Report, Air Force Institute of Technology, Wright-Patterson AFB, OH, Report No. AD-A151 855.
40.
Braun
,
M.
, and
Seume
,
J. R.
,
2006
, “
Forward Sweep in a Four-Stage High-Speed Axial Compressor
,”
ASME
Paper No. GT2006-90218.
41.
Hellmich
,
B.
, and
Seume
,
J. R.
,
2008
, “
Causes of Acoustic Resonance in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
130
(
3
), p.
031003
.
42.
Siemann
,
J.
,
Krenz
,
I.
, and
Seume
,
J. R.
,
2016
, “
Experimental Investigation of Aspiration in a Multi-Stage High-Speed Axial-Compressor
,”
ASME
Paper No. GT2016-56440.
43.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
44.
Döring
,
F.
,
Staudacher
,
S.
,
Koch
,
C.
, and
Weißschuh
,
M.
,
2017
, “
Modeling Particle Deposition Effects in Aircraft Engine Compressors
,”
ASME J. Turbomach.
,
139
(
5
), p.
051003
.
45.
Sallee
,
G.
,
1978
, “
Performance Deterioration Based on Existing (Historical) Data; JT9D Jet Engine Diagnostics Program
,” Pratt and Whitney Aircraft Group, East Hartford, CT, Report No. CR-135448.
46.
Kramer
,
W.
, and
Smith
,
J.
,
1978
, “
Long-Term CF6 Engine Performance Deterioration: Evaluation of Engine S/N 451-380
,” Aircraft Engine Group, Cincinnati, OH, Report No. CR-135448.
You do not currently have access to this content.