This paper demonstrates the development of a flexible fault diagnosis methodology that can detect up to ten different faults in the induction motor (IM), simultaneously. The major IM electrical faults, such as the broken rotor bar (BRB), phase unbalance (PUF), and stator winding fault (SWF), and mechanical faults, such as bearing fault (BF), unbalanced rotor (UR), bowed rotor (BR), and misaligned rotor (MR), are considered with different fault severities for the diagnosis. The experiments are conducted with three varying loads and seven different speeds, and the frequency domain vibration and current data are acquired at a relatively low sampling rate of 1 kHz. Several statistical features are extracted and then the best feature-set is selected using the wrapper model. Thereafter, a data classification tool based on the support vector machine (SVM) is used for the fault characterization. Initially, a multi-fault diagnosis is performed by training and testing the SVM at the same operating conditions (i.e., load and speed). The performance of the classifier is found to be very good at all IM operating conditions. The main focus of this study lies in overcoming the fault diagnosis, where the data are unavailable at required operating conditions. This is accomplished by employing interpolation and extrapolation strategies for different loads and speeds. The proposed methodology not only solves practical problem of unavailability of data at different operating conditions but also shows good performance and takes low computation time, which are vital requirements of an online intelligent condition monitoring system.

References

References
1.
Henao
,
H.
,
Capolino
,
G.-A.
,
Fernandez-Cabanas
,
M.
,
Filippetti
,
F.
,
Bruzzese
,
C.
,
Strangas
,
E.
,
Pusca
,
R.
,
Estima
,
J.
,
Riera-Guasp
,
M.
, and
Hedayati-Kia
,
S.
,
2014
, “
Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques
,”
IEEE Ind. Electron. Mag.
,
8
(
2
), pp.
31
42
.
2.
Nandi
,
S.
,
Toliyat
,
H. A.
, and
Li
,
X.
,
2005
, “
Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review
,”
IEEE Trans. Energy Convers.
,
20
(
4
), pp.
719
729
.
3.
Avendaño-Valencia
,
L. D.
, and
Chatzi
,
E. N.
,
2017
, “
Sensitivity Driven Robust Vibration-Based Damage Diagnosis Under Uncertainty Through Hierarchical Bayes Time-Series Representations
,”
Procedia Eng.
,
199
, pp.
1852
1857
.
4.
Chua
,
T. W.
,
Tan
,
W. W.
,
Wang
,
Z. X.
, and
Chang
,
C. S.
,
2010
, “
Hybrid Time-Frequency Domain Analysis for Inverter-Fed Induction Motor Fault Detection
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
), Bari, Italy, July 4–7, pp.
1633
1638
.
5.
Li
,
C.
,
Sánchez
,
R. V.
,
Zurita
,
G.
,
Cerrada
,
M.
, and
Cabrera
,
D.
,
2016
, “
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
,”
Sensors
,
16
(
6
), p.
895
.
6.
Konar
,
P.
, and
Chattopadhyay
,
P.
,
2011
, “
Bearing Fault Detection of Induction Motor Using Wavelet and Support Vector Machines (SVMs)
,”
Appl. Soft Comput.
,
11
(
6
), pp.
4203
4211
.
7.
Mehrjou
,
M. R.
,
Mariun
,
N.
,
Marhaban
,
M. H.
, and
Misron
,
N.
,
2011
, “
Rotor Fault Condition Monitoring Techniques for Squirrel-Cage Induction Machine—A Review
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2827
2848
.
8.
Bradley
,
W. J.
,
Ebrahimi
,
M. K.
, and
Ehsani
,
M.
,
2014
, “
A General Approach for Current-Based Condition Monitoring of Induction Motors
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041024
.
9.
Knight
,
A. M.
, and
Bertani
,
S. P.
,
2005
, “
Mechanical Fault Detection in a Medium-Sized Induction Motor Using Stator Current Monitoring
,”
IEEE Trans. Energy Convers.
,
20
(
4
), pp.
753
760
.
10.
Benbouzid
,
M. E. H.
, and
Kliman
,
G. B.
,
2003
, “
What Stator Current Processing-Based Technique to Use for Induction Motor Rotor Faults Diagnosis?
,”
IEEE Trans. Energy Convers.
,
18
(
2
), pp.
238
244
.
11.
Didier
,
G.
,
Ternisien
,
E.
,
Caspary
,
O.
, and
Razik
,
H.
,
2007
, “
A New Approach to Detect Broken Rotor Bars in Induction Machines by Current Spectrum Analysis
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
1127
1142
.
12.
Schoen
,
R. R.
, and
Habetler
,
T. G.
,
1993
, “
Effects of Time-Varying Loads on Rotor Fault Detection in Induction Machines
,”
IEEE
Industry Applications Society Annual Meeting, Toronto, ON, Canada, Oct. 2–7
, pp.
324
330
.
13.
Schoen
,
R. R.
, and
Habetler
,
T. G.
,
1996
, “
Evaluation and Implementation of a System to Eliminate Arbitrary Load Effects in Current-Based Monitoring of Induction Machines
,”
31st IAS Annual Meeting Industry Applications Conference
(
IAS'96
), San Diego, CA, Oct. 6–10, pp.
671
678
.
14.
Thomson
,
W. T.
, and
Orpin
,
P.
,
2002
, “
Current and Vibration Monitoring for Fault Diagnosis and Root Cause Analysis of Induction Motor Drives
,”
31st Turbomachinery Symposium
, College Station, TX, pp.
61
67
.https://oaktrust.library.tamu.edu/handle/1969.1/163320
15.
Iorgulescu
,
M.
, and
Beloiu
,
R.
,
2008
, “
Vibration and Current Monitoring for Fault's Diagnosis of Induction Motors
,”
Ann. Univ. Craiova, Electr. Eng. Ser.
,
32
, pp.
102
107
.https://pdfs.semanticscholar.org/f881/47e9879a4d849f7c538b84897d8924955762.pdf
16.
Chang
,
S. C.
, and
Yacamini
,
R.
,
1996
, “
Experimental Study of the Vibrational Behaviour of Machine Stators
,”
IEE Proc. Electric Power Appl.
,
143
(
3
), pp.
242
250
.
17.
Maruthi
,
G. S.
, and
Vittal
,
K. P.
,
2005
, “
Electrical Fault Detection in Three Phase Squirrel Cage Induction Motor by Vibration Analysis Using MEMS Accelerometer
,”
International Conference on Power Electronics and Drives Systems
, Kuala Lumpur, Malaysia, Nov. 28–Dec. 1, pp.
838
843
.
18.
Lee
,
S.
,
Bryant
,
M. D.
, and
Karlapalem
,
L.
,
2006
, “
Model-and Information Theory-Based Diagnostic Method for Induction Motors
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
3
), pp.
584
591
.
19.
Siddique
,
A.
,
Yadava
,
G. S.
, and
Singh
,
B.
,
2003
, “
Applications of Artificial Intelligence Techniques for Induction Machine Stator Fault Diagnostics: Review
,”
Fourth IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives
(
SDEMPED
), Atlanta, GA, Aug. 24–26, pp.
29
34
.
20.
Yang
,
B. S.
,
Oh
,
M. S.
, and
Tan
,
A. C. C.
,
2009
, “
Fault Diagnosis of Induction Motor Based on Decision Trees and Adaptive Neuro-Fuzzy Inference
,”
Expert Syst. Appl.
,
36
(
2
), pp.
1840
1849
.
21.
Li
,
L.
, and
Mechefske
,
C. K.
,
2006
, “
Induction Motor Fault Detection and Diagnosis Using Artificial Neural Networks
,”
Int. J. COMADEM
,
9
(
3
), p.
15
.
22.
Ghate
,
V. N.
, and
Dudul
,
S. V.
,
2009
, “
Induction Machine Fault Detection Using Support Vector Machine Based Classifier
,”
WSEAS Trans. Syst.
,
8
(
5
), pp.
591
603
.https://pdfs.semanticscholar.org/0f4f/077d58531cac3e7f1a852e3a6d1f8f590a22.pdf
23.
Bacha
,
K.
,
Salem
,
S. B.
, and
Chaari
,
A.
,
2012
, “
An Improved Combination of Hilbert and Park Transforms for Fault Detection and Identification in Three-Phase Induction Motors
,”
Int. J. Electr. Power Energy Syst.
,
43
(
1
), pp.
1006
1016
.
24.
Silva
,
V. A. D.
, and
Pederiva
,
R.
,
2013
, “
Fault Detection in Induction Motors Based on Artificial Intelligence
,”
Surveillance 7 International Conference
, Chartres, France, Oct. 29–30, pp. 29–30.https://surveillance7.sciencesconf.org/conference/surveillance7/32_fault_detection_in_induction_motors_based_on_artificial_intelligence.pdf
25.
Yuan
,
S.
, and
Li
,
M.
,
2012
, “
Fault Diagnosis Using Binary Tree and Sphere-Structured Support Vector Machines
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1431
1438
.
26.
Gangsar
,
P.
, and
Tiwari
,
R.
,
2016
, “
Taxonomy of Induction-Motor Mechanical-Fault Based on Time-Domain Vibration Signals by Multiclass SVM Classifiers
,”
Intell. Ind. Syst.
,
2
(
3
), pp.
269
281
.
27.
Widodo
,
A.
, and
Yang
,
B. S.
,
2008
, “
Wavelet Support Vector Machine for Induction Machine Fault Diagnosis Based on Transient Current Signal
,”
Expert Syst. Appl.
,
35
(
1–2
), pp.
307
316
.
28.
Yang
,
B. S.
, and
Kim
,
K. J.
,
2006
, “
Application of Dempster–Shafer Theory in Fault Diagnosis of Induction Motors Using Vibration and Current Signals
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
403
420
.
29.
Yang
,
B. S.
,
Han
,
T.
, and
Yin
,
Z. J.
,
2006
, “
Fault Diagnosis System of Induction Motors Using Feature Extraction, Feature Selection and Classification Algorithm
,”
JSME Int. J. Ser. C
,
49
(
3
), pp.
734
741
.
30.
Vapnik
,
V. N.
,
1999
, “
An Overview of Statistical Learning Theory
,”
IEEE Trans. Neural Networks
,
10
(
5
), pp.
988
999
.
31.
Burges
,
C. J.
,
1998
, “
A Tutorial on Support Vector Machines for Pattern Recognition
,”
Data Mining Knowl. Discovery
,
2
(
2
), pp.
121
167
.
32.
Hsu
,
C. W.
, and
Lin
,
C. J.
,
2002
, “
A Comparison of Methods for Multiclass Support Vector Machines
,”
IEEE Trans. Neural Networks
,
13
(
2
), pp.
415
425
.
33.
Salem
,
S. B.
,
Bacha
,
K.
, and
Chaari
,
A.
,
2012
, “
Support Vector Machine Based Decision for Mechanical Fault Condition Monitoring in Induction Motor Using an Advanced Hilbert-Park Transform
,”
ISA Trans.
,
51
(
5
), pp.
566
572
.
34.
Chang
,
C. C.
, and
Lin
,
C. J.
,
2011
, “
LIBSVM: A Library Support Vector Machines
,”
ACM Trans. Intell. Syst. Technol.
,
2
(
3
), p.
27
.https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
35.
Tiwari
,
R.
,
2017
,
Rotor Systems: Analysis and Identification
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.