To accurately simulate fracture, it is necessary to account for small-scale randomness in the properties of a material. Apparent properties of statistical volume element (SVE) can be characterized below the scale of a representative volume element (RVE). Apparent properties cannot be defined uniquely for an SVE, in the manner that unique effective properties can be defined for an RVE. Both constitutive behavior and material strength properties in SVE must be statistically characterized. The geometrical partitioning method can be critically important in affecting the probability distributions of mesoscale material property parameters. Here, a Voronoi tessellation-based partitioning scheme is applied to generate SVE. Resulting material property distributions are compared with those from SVE generated by square partitioning. The proportional limit stress of the SVE is used to approximate SVE strength. Superposition of elastic results is used to obtain failure strength distributions from boundary conditions at variable angles of loading.

References

References
1.
Hazanov
,
S.
, and
Huet
,
C.
,
1994
, “
Order Relationships for Boundary Conditions Effect in Heterogeneous Bodies Smaller Than the Representative Volume
,”
J. Mech. Phys. Solids
,
42
(
12
), pp.
1995
2011
.
2.
Huet
,
C.
,
1990
, “
Application of Variational Concepts to Size Effects in Elastic Heterogeneous Bodies
,”
J. Mech. Phys. Solids
,
38
(
6
), pp.
813
841
.
3.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
,
21
(
2
), pp.
112
132
.
4.
Ostoja-Starzewski
,
M.
,
1998
, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
,
35
(
19
), pp.
2429
2455
.
5.
Gitman
,
I. M.
,
Askes
,
H.
, and
Sluys
,
L. J.
,
2007
, “
Representative Volume: Existence and Size Determination
,”
Eng. Fract. Mech.
,
74
(
16
), pp.
2518
2534
.
6.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3647
3679
.
7.
Baxter
,
S.
, and
Graham
,
L.
,
2000
, “
Characterization of Random Composites Using Moving-Window Technique
,”
J. Eng. Mech.
,
126
(
4
), pp.
389
397
.
8.
Graham
,
L.
, and
Baxter
,
S.
,
2001
, “
Simulation of Local Material Properties Based on Moving-Window Gmc
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
295
305
.
9.
Graham-Brady
,
L.
,
Siragy
,
E.
, and
Baxter
,
S.
,
2003
, “
Analysis of Heterogeneous Composites Based on Moving-Window Techniques
,”
J. Eng. Mech.
,
129
(
9
), pp.
1054
1064
.
10.
Acton
,
K.
, and
Graham-Brady
,
L.
,
2009
, “
Meso-Scale Modeling of Plasticity in Composites
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
920
932
.
11.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
(
3
), pp.
293
297
.https://pdfs.semanticscholar.org/88c3/7770028e7ed61180a34d6a837a9a4db3b264.pdf
12.
Abedi
,
R.
,
Omidi
,
O.
, and
Clarke
,
P.
,
2016
, “
Numerical Simulation of Rock Dynamic Fracturing and Failure Including Microscale Material Randomness
,”
50th U.S. Rock Mechanics/Geomechanics Symposium
, Houston, TX, June 26–29, Paper No. ARMA 16-0531.https://www.onepetro.org/conference-paper/ARMA-2016-531
13.
Abedi
,
R.
,
Haber
,
R. B.
, and
Clarke
,
P. L.
,
2017
, “
Effect of Random Defects on Dynamic Fracture in Quasi-Brittle Materials
,”
Int. J. Fract.
,
208
(
1–2
), pp.
241
268
.
14.
Koyama
,
T.
, and
Jing
,
L.
,
2007
, “
Effects of Model Scale and Particle Size on Micro-Mechanical Properties and Failure Processes of Rocks—A Particle Mechanics Approach
,”
Eng. Anal. Boundary Elem.
,
31
(
5
), pp.
458
472
.
15.
Acton
,
K.
,
Baxter
,
S.
,
Bahmani
,
B.
,
Clarke
,
P.
, and
Abedi
,
R.
,
2017
, “
Mesoscale Models Characterizing Material Property Fields Used as a Basis for Predicting Fracture Patterns in Quasi-Brittle Materials
,”
ASME
Paper No. IMECE2017-71500.
16.
Clarke
,
P.
,
Abedi
,
R.
,
Bahmani
,
B.
,
Acton
,
K.
, and
Baxter
,
S.
,
2017
, “
Effect of the Spatial Inhomogeneity of Fracture Strength on Fracture Pattern for Quasi-Brittle Materials
,”
ASME
Paper No. IMECE2017-71515.
17.
Salmi
,
M.
,
Auslender
,
F.
,
Bornert
,
M.
, and
Fogli
,
M.
,
2012
, “
Apparent and Effective Mechanical Properties of Linear Matrix-Inclusion Random Composites: Improved Bounds for the Effective Behavior
,”
Int. J. Solids Struct.
,
49
(
10
), pp.
1195
1211
.
18.
Acton
,
K. A.
, and
Baxter
,
S. C.
,
2018
, “
Characterization of Random Composite Properties Based on Statistical Volume Element Partitioning
,”
J. Eng. Mech.
,
144
(
2
), p.
04017168
.
19.
Acton
,
K. A.
,
Baxter
,
S. C.
,
Bahmani
,
B.
,
Clarke
,
P. L.
, and
Abedi
,
R.
,
2018
, “
Voronoi Tessellation Based Statistical Volume Element Characterization for Use in Fracture Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
336
, pp.
135
155
.
20.
Nguyen
,
V. P.
,
Lloberas-Valls
,
O.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
,
2011
, “
Homogenization-Based Multiscale Crack Modelling: From Micro-Diffusive Damage to Macro-Cracks
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
9–12
), pp.
1220
1236
.
21.
Daphalapurkar
,
N.
,
Ramesh
,
K.
,
Graham-Brady
,
L.
, and
Molinari
,
J.
,
2011
, “
Predicting Variability in the Dynamic Failure Strength of Brittle Materials Considering Pre-Existing Flaws
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
297
319
.
22.
Bazant
,
Z. P.
, and
Planas
,
J.
,
1997
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
, Vol.
16
,
CRC Press
,
New York
.
23.
Bazant
,
Z. P.
, and
Le
,
J.-L.
,
2017
,
Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
,
Cambridge University Press
,
New York
.
24.
Zhou
,
F.
, and
Molinari
,
J.
,
2004
, “
Stochastic Fracture of Ceramics Under Dynamic Tensile Loading
,”
Int. J. Solids Struct.
,
41
(
22–23
), pp.
6573
6596
.
25.
Schicker
,
J.
, and
Pfuff
,
M.
,
2006
, “
Statistical Modelling of Fracture in Quasi-Brittle Materials
,”
Adv. Eng. Mater.
,
8
(
5
), pp.
406
410
.
26.
Levy
,
S.
, and
Molinari
,
J.
,
2010
, “
Dynamic Fragmentation of Ceramics, Signature of Defects and Scaling of Fragment Sizes
,”
J. Mech. Phys. Solids
,
58
(
1
), pp.
12
26
.
27.
Bahmani
,
B.
,
Yang
,
M.
,
Nagarajan
,
A.
,
Clarke
,
P. L.
,
Soghrati
,
S.
, and
Abedi
,
R.
,
2019
, “
Automated Homogenization-Based Fracture Analysis: Effects of SVE Size and Boundary Condition
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
701
727
.
You do not currently have access to this content.