A fast statistical homogenization procedure (FSHP) based on virtual element method (VEM)—previously developed by the authors has been successfully adopted for the homogenization of particulate random composites, via the definition of the representative volume element (RVE), and of the related equivalent elastic moduli. In particular, the adoption of virtual elements of degree one for modeling the inclusions provided reliable results for materials with low contrast, defined as the ratio between mechanical properties of inclusions and matrix. Porous media are then here described as bimaterial systems in which soft circular inclusions, with a very low value of material contrast, are randomly distributed in a continuous stiffer matrix. Several simulations have been performed by varying the level of porosity, highlighting the effectiveness of FSHP in conjunction with virtual elements of degree one.

References

References
1.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
.
2.
Charmpis
,
D. C.
,
Schuëller
,
G. I.
, and
Pellissetti
,
M. F.
,
2007
, “
The Need for Linking Micromechanics of Materials With Stochastic Finite Elements: A Challenge for Materials Science
,”
Comput. Mater. Sci.
,
41
(
1
), pp.
27
37
.
3.
Stefanou
,
G.
,
Savvas
,
D.
, and
Papadrakakis
,
M.
,
2015
, “
Stochastic Finite Element Analysis of Composite Structures Based on Material Microstructure
,”
Compos. Struct.
,
132
, pp.
384
392
.
4.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
,
21
(
2
), pp.
112
132
.
5.
Sadowski
,
T.
, and
Marsavina
,
L.
,
2011
, “
Multiscale Modelling of Two-Phase Ceramic Matrix Composites
,”
Comput. Mater. Sci.
,
50
(
4
), pp.
1336
1346
.
6.
Ma
,
J.
,
Sahraee
,
S.
,
Wriggers
,
P.
, and
De Lorenzis
,
L.
,
2015
, “
Stochastic Multiscale Homogenization Analysis of Heterogeneous Materials Under Finite Deformations With Full Uncertainty in the Microstructure
,”
Comput. Mech.
,
55
(
5
), pp.
819
835
.
7.
Ghosh
,
S.
, and
Kubair
,
D. V.
,
2016
, “
Exterior Statistics Based Boundary Conditions for Representative Volume Elements of Elastic Composites
,”
J. Mech. Phys. Solids
,
95
, pp.
1
24
.
8.
Savvas
,
D.
, and
Stefanou
,
G.
,
2017
, “
Assessment of the Effect of Microstructural Uncertainty on the Macroscopic Properties of Random Composite Materials
,”
J. Compos. Mater.
,
51
(
19
), pp.
2707
2725
.
9.
Ramakrishnan
,
N.
, and
Arunachalam
,
V. S.
,
1990
, “
Effective Elastic Moduli of Porous Solids
,”
J. Mater. Sci.
,
25
(
9
), pp.
3930
3937
.
10.
Said
,
B. M.
,
Salah
,
M.
,
Kanit
,
T.
, and
Kamel
,
F.
,
2016
, “
On the Homogenization of 2D Porous Material With Determination of RVE
,”
Int. J. Mech. Mechatronics Eng.
,
16
(
1
), pp.
81
86
.http://ijens.org/Vol_16_I_01/163201-1818-IJMME-IJENS.pdf
11.
Herakovich
,
C. T.
, and
Baxter
,
S. C.
,
1999
, “
Influence of Pore Geometry on the Effective Response of Porous Media
,”
J. Mater. Sci.
,
34
(
7
), pp.
1595
1609
.
12.
Roberts
,
A. P.
, and
Garboczi
,
E. J.
,
2000
, “
Elastic Properties of Model Porous Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
12
), pp.
3041
3048
.
13.
Poutet
,
J.
,
Manzoni
,
D.
,
Hage-Chehade
,
F.
,
Jacquin
,
C. J.
,
Boutéca
,
M. J.
,
Thovert
,
J.
, and
Adler
,
P. M.
,
1996
, “
The Effective Mechanical Properties of Random Porous Media
,”
J. Mech. Phys. Solids
,
44
(
10
), pp.
1587
1620
.
14.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
15.
Coussy
,
O.
,
1991
,
Mécanique Des Milieux Poreux
,
Editions Technip
,
Paris, France
.
16.
Coussy
,
O.
,
2010
,
Mechanics and Physics of Porous Solids. Mechanics and Physics of Porous Solids
,
Wiley
,
Chichester, UK
.
17.
Sciarra
,
G.
,
dell'Isola
,
F.
, and
Coussy
,
O.
,
2007
, “
Second Gradient Poromechanics
,”
Int. J. Solids Struct.
,
44
(
20
), pp.
6607
6629
.
18.
Sanchez-Palencia
,
E.
,
1980
,
Non-Homogeneous Media and Vibration Theory
(Lecture Notes in Physics, Vol. 127),
Springer-Verlag
,
Berlin
.
19.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
,
2001
, “
A Multi-Level Computational Model for Multi-Scale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
,
38
(
14
), pp.
2335
2385
.
20.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Brekelmans
,
W. A. M.
,
2010
, “
Multi-Scale Computational Homogenization: Trends and Challenges
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2175
2182
.
21.
Ostoja-Starzewski
,
M.
,
2007
,
Microstructural Randomness and Scaling in Mechanics of Materials
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
22.
Trovalusci
,
P.
,
Ostoja-Starzewski
,
M.
,
De Bellis
,
M. L.
, and
Murrali
,
A.
,
2015
, “
Scale–Dependent Homogenization of Random Composites as Micropolar Continua
,”
Eur. J. Mech. A/Solids
,
49
, pp.
396
407
.
23.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3647
3679
.
24.
Du
,
X.
, and
Ostoja-Starzewski
,
M.
,
2006
, “
On the Size of Representative Volume Element for Darcy Law in Random Media
,”
Proc. R. Soc. London A
,
462
(
2074
), pp.
2949
2963
.
25.
Khisaeva
,
Z. F.
, and
Ostoja-Starzewski
,
M.
,
2006
, “
On the Size of RVE in Finite Elasticity of Random Composites
,”
J. Elasticity
,
85
(
2
), p.
153
.
26.
Gitman
,
I. M.
,
Askes
,
H.
, and
Sluys
,
L. J.
,
2007
, “
Representative Volume: Existence and Size Determination
,”
Eng. Fract. Mech.
,
74
(
16
), pp.
2518
2534
.
27.
Zeman
,
J.
, and
Sejnoha
,
M.
,
2007
, “
From Random Microstructures to Representative Volume Elements
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
4
), pp.
S325
S335
.
28.
Ranganathan
,
S. I.
, and
Ostoja-Starzewski
,
M.
,
2008
, “
Scaling Function, Anisotropy and the Size of RVE in Elastic Random Polycrystals
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2773
2791
.
29.
Ranganathan
,
S. I.
, and
Ostoja-Starzewski
,
M.
,
2009
, “
Towards Scaling Laws in Random Polycrystals
,”
Int. J. Eng. Sci., 47
,
47
(
11–12
), pp.
1322
1330
.
30.
Bouaoune
,
L.
,
Brunet
,
Y.
,
Moumen
,
A. E.
,
Kanit
,
T.
, and
Mazouz
,
H.
,
2016
, “
Random Versus Periodic Microstructures for Elasticity of Fibers Reinforced Composites
,”
Compos. Part B: Eng.
,
103
, pp.
68
73
.
31.
Djebara
,
Y.
,
Moumen
,
A. E.
,
Kanit
,
T.
,
Madani
,
S.
, and
Imad
,
A.
,
2016
, “
Modeling of the Effect of Particles Size, Particles Distribution and Particles Number on Mechanical Properties of Polymer-Clay Nano-Composites: Numerical Homogenization Versus Experimental Results
,”
Compos. Part B: Eng.
,
86
, pp.
135
142
.
32.
Sadowski
,
T.
, and
Pankowski
,
B.
,
2016
, “
Numerical Modelling of Two-Phase Ceramic Composite Response Under Uniaxial Loading
,”
Compos. Struct.
,
143
, pp.
388
394
.
33.
Savvas
,
D.
,
Stefanou
,
G.
, and
Papadrakakis
,
M.
,
2016
, “
Determination of RVE Size for Random Composites With Local Volume Fraction Variation
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
340
358
.
34.
Kubair
,
D. V.
,
Pinz
,
M.
,
Kollins
,
K.
,
Przybyla
,
C.
, and
Ghosh
,
S.
,
2018
, “
Role of Exterior Statistics-Based Boundary Conditions for Property-Based Statistically Equivalent Representative Volume Elements of Polydispersed Elastic Composites
,”
J. Compos. Mater.
,
52
(
21
), pp.
2919
2928
.
35.
Trovalusci
,
P.
,
De Bellis
,
M. L.
,
Ostoja-Starzewski
,
M.
, and
Murrali
,
A.
,
2014
, “
Particulate Random Composites Homogenized as Micropolar Materials
,”
Meccanica
,
49
(
11
), pp.
2719
2727
.
36.
Reccia
,
E.
,
De Bellis
,
M. L.
,
Trovalusci
,
P.
, and
Masiani
,
R.
,
2018
, “
Sensitivity to Material Contrast in Homogenization of Random Particle Composites as Micropolar Continua
,”
Compos. Part B: Eng.
,
136
, pp.
39
45
.
37.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
38.
Trovalusci
,
P.
,
De Bellis
,
M. L.
, and
Ostoja-Starzewski
,
M.
,
2016
, “
A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua
,”
Generalized Continua as Models for Classical and Advanced Materials
(Advanced Structured Materials, Vol.
42
),
H.
Altenbach
and
S.
Forest
, eds.,
Springer International Publishing
,
Berlin
, pp.
425
441
.
39.
Trovalusci
,
P.
,
De Bellis
,
M. L.
, and
Masiani
,
R.
,
2017
, “
A Multiscale Description of Particle Composites: From Lattice Microstructures to Micropolar Continua
,”
Compos. Part B: Eng.
,
128
, pp.
164
173
.
40.
Salmi
,
M.
,
Auslender
,
F.
,
Bornert
,
M.
, and
Fogli
,
M.
,
2012
, “
Apparent and Effective Mechanical Properties of Linear Matrix-Inclusion Random Composites: Improved Bounds for the Effective Behavior
,”
Int. J. Solids Struct.
,
49
(
10
), pp.
1195
1211
.
41.
Pingaro
,
M.
,
Reccia
,
E.
,
Trovalusci
,
P.
, and
Masiani
,
R.
,
2019
, “
Fast Statistical Homogenization Procedure (FSHP) for Particle Random Composites Using Virtual Element Method
,”
Comput. Mech.
(epub).
42.
Beirão Da Veiga
,
L.
,
Brezzi
,
F.
,
Cangiani
,
A.
,
Manzini
,
G.
,
Marini
,
L. D.
, and
Russo
,
A.
,
2013
, “
Basic Principle of Virtual Element Methods
,”
Math. Models Methods Appl. Sci.
,
23
(
1
), pp.
199
214
.
43.
Beirão Da Veiga
,
L.
,
Brezzi
,
F.
, and
Marini
,
L. D.
,
2013
, “
Virtual Elements for Linear Elasticity Problems
,”
SIAM J. Numer. Anal.
,
51
(
2
), pp.
794
812
.
44.
Gain
,
A. L.
,
Talischi
,
C.
, and
Paulino
,
G. H.
,
2014
, “
On the Virtual Element Method for Three-Dimensional Linear Elasticity Problems on Arbitrary Polyhedral Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
282
, pp.
132
160
.
45.
Wriggers
,
P.
, and
Hudobivnik
,
B.
,
2017
, “
A Low Order Virtual Element Formulation for Finite Elasto-Plastic Deformations
,”
Comput. Methods Appl. Mech. Eng.
,
327
, pp.
459
477
.
46.
De Bellis
,
M. L.
,
Wriggers
,
P.
,
Hudobivnik
,
B.
, and
Zavarise
,
G.
,
2018
, “
Virtual Element Formulation for Isotropic Damage
,”
Finite Elem. Anal. Des.
,
144
, pp.
38
48
.
47.
Artioli
,
E.
,
Marfia
,
S.
, and
Sacco
,
E.
,
2018
, “
High-Order Virtual Element Method for the Homogenization of Long Fiber Nonlinear Composites
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
571
585
.
48.
Ramakrishnan
,
N.
, and
Arunachalam
,
V. S.
,
1993
, “
Effective Elastic Moduli of Porous Ceramic Materials
,”
J. Am. Ceram. Soc.
,
76
(
11
), pp.
2745
2752
.
49.
Arnold
,
M.
,
Boccaccini
,
A. R.
, and
Ondracek
,
G.
,
1996
, “
Prediction of the Poisson's Ratio of Porous Materials
,”
J. Mater. Sci.
,
31
(
6
), pp.
1643
1646
.
50.
Asmani
,
M.
,
Kermel
,
C.
,
Leriche
,
A.
, and
Ourak
,
M.
,
2001
, “
Influence of Porosity on Youngs Modulus and Poisson's Ratio in Alumina Ceramics
,”
J. Eur. Ceram. Soc.
,
21
(
8
), pp.
1081
1086
.
51.
Artioli
,
E.
,
Beirão Da Veiga
,
L.
,
Lovadina
,
C.
, and
Sacco
,
E.
,
2017
, “
Arbitrary Order 2D Virtual Elements for Polygonal Meshes—Part I: Elastic Problem
,”
Comput. Mech.
,
60
(
3
), pp.
355
377
.
You do not currently have access to this content.