This paper focuses on the computational homogenization of graphene sheet-reinforced composites with randomly dispersed inclusions and uncertainty in the constituent materials. Material uncertainty of the matrix and of the graphene inclusions are considered separately and their relative effect on the homogenized properties is assessed. The uncertainty in the inclusion material is due to structural defects of the graphene lattice and is taken into account using random variables for each component of the elasticity matrix. Moreover, Monte Carlo simulation is used to extract the statistical characteristics of the homogenized properties of the composite material. The results lead to useful conclusions regarding the effect of material and geometrical uncertainty on the macroscopic properties of graphene sheet-reinforced composites.

References

References
1.
Aluko
,
O.
,
Gowtham
,
S.
, and
Odegard
,
G.
,
2017
, “
Multiscale Modeling and Analysis of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composite
,”
Compos. Part B: Eng.
,
131
, pp.
82
90
.
2.
Ji
,
X.-Y.
,
Cao
,
Y.-P.
, and
Feng
,
X.-Q.
,
2010
, “
Micromechanics Prediction of the Effective Elastic Moduli of Graphene Sheet-Reinforced Polymer Nanocomposites
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
4
), p.
045005
.
3.
Hashimoto
,
A.
,
Suenaga
,
K.
,
Gloter
,
A.
,
Urita
,
K.
, and
Iijima
,
S.
,
2004
, “
Direct Evidence for Atomic Defects in Graphene Layers
,”
Nature
,
430
(
7002
), p.
870
.
4.
Meyer
,
J. C.
,
Kisielowski
,
C.
,
Erni
,
R.
,
Rossell
,
M. D.
,
Crommie
,
M.
, and
Zettl
,
A.
,
2008
, “
Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes
,”
Nano Lett.
,
8
(
11
), pp.
3582
3586
.
5.
Banhart
,
F.
,
Kotakoski
,
J.
, and
Krasheninnikov
,
A. V.
,
2011
, “
Structural Defects in Graphene
,”
ACS Nano
,
5
(
1
), pp.
26
41
.
6.
Tserpes
,
K. I.
,
2012
, “
Strength of Graphenes Containing Randomly Dispersed Vacancies
,”
Acta Mech.
,
223
(
4
), pp.
669
678
.
7.
Rafiee
,
R.
, and
Eskandariyun
,
A.
,
2017
, “
Comparative Study on Predicting Young's Modulus of Graphene Sheets Using Nano-Scale Continuum Mechanics Approach
,”
Phys. E
,
90
, pp.
42
48
.
8.
Savvas
,
D.
, and
Stefanou
,
G.
,
2018
, “
Determination of Random Material Properties of Graphene Sheets With Different Types of Defects
,”
Compos. Part B: Eng.
,
143
, pp.
47
54
.
9.
Sun
,
R.
,
Li
,
L.
,
Feng
,
C.
,
Kitipornchai
,
S.
, and
Yang
,
J.
,
2018
, “
Tensile Behavior of Polymer Nanocomposite Reinforced With Graphene Containing Defects
,”
Eur. Polym. J.
,
98
, pp.
475
482
.
10.
Savvas
,
D.
, and
Stefanou
,
G.
,
2017
, “
Assessment of the Effect of Microstructural Uncertainty on the Macroscopic Properties of Random Composite Materials
,”
J. Compos. Mater.
,
51
(
19
), pp.
2707
2725
.
11.
Liu
,
L.
,
Qing
,
M.
,
Wang
,
Y.
, and
Chen
,
S.
,
2015
, “
Defects in Graphene: Generation, Healing, and Their Effects on the Properties of Graphene: A Review
,”
J. Mater. Sci. Technol.
,
31
(
6
), pp.
599
606
.
12.
Tian
,
W.
,
Li
,
W.
,
Yu
,
W.
, and
Liu
,
X.
,
2017
, “
A Review on Lattice Defects in Graphene: Types, Generation, Effects and Regulation
,”
Micromachines
,
8
(
5
), p.
163
.
13.
Savvas
,
D.
,
Stefanou
,
G.
,
Papadrakakis
,
M.
, and
Deodatis
,
G.
,
2014
, “
Homogenization of Random Heterogeneous Media With Inclusions of Arbitrary Shape Modeled by XFEM
,”
Comput. Mech.
,
54
(
5
), pp.
1221
1235
.
14.
Li
,
C.
, and
Chou
,
T.-W.
,
2003
, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2487
2499
.
15.
Sakata
,
S.
,
Okuda
,
K.
, and
Ikeda
,
K.
,
2015
, “
Stochastic Analysis of Laminated Composite Plate Considering Stochastic Homogenization Problem
,”
Front. Struct. Civ. Eng.
,
9
(
2
), pp.
141
153
.
16.
Trovalusci
,
P.
,
Ostoja-Starzewski
,
M.
,
De Bellis
,
M. L.
, and
Murrali
,
A.
,
2015
, “
Scale-Dependent Homogenization of Random Composites as Micropolar Continua
,”
Eur. J. Mech.-A/Solids
,
49
, pp.
396
407
.
17.
Ostoja-Starzewski
,
M.
,
Kale
,
S.
,
Karimi
,
P.
,
Malyarenko
,
A.
,
Raghavan
,
B.
,
Ranganathan
,
S.
, and
Zhang
,
J.
,
2016
, “
Chapter Two-Scaling to RVE in Random Media
,”
Adv. Appl. Mech.
,
49
, pp.
111
211
.
18.
Savvas
,
D.
,
Stefanou
,
G.
, and
Papadrakakis
,
M.
,
2016
, “
Determination of RVE Size for Random Composites With Local Volume Fraction Variation
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
340
358
.
19.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials: A Survey
,”
ASME J. Appl. Mech.
,
50
(
3
), pp.
481
505
.
20.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
21.
Huet
,
C.
,
1990
, “
Application of Variational Concepts to Size Effects in Elastic Heterogeneous Bodies
,”
J. Mech. Phys. Solids
,
38
(
6
), pp.
813
841
.
22.
Miehe
,
C.
, and
Koch
,
A.
,
2002
, “
Computational Micro-to-Macro Transitions of Discretized Microstructures Undergoing Small Strains
,”
Arch. Appl. Mech.
,
72
(
4–5
), pp.
300
317
.
23.
Kamiński
,
M.
,
2014
, “
Gaussian Uncertainty in Homogenization of Rubber–Carbon Black Nanocomposites
,”
Compos. Struct.
,
113
, pp.
225
235
.
24.
Stefanou
,
G.
,
Savvas
,
D.
, and
Papadrakakis
,
M.
,
2017
, “
Stochastic Finite Element Analysis of Composite Structures Based on Mesoscale Random Fields of Material Properties
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
319
337
.
You do not currently have access to this content.