This paper addresses the effect of microstructure uncertainties on elastic properties of nanocomposites using finite element analysis (FEA) simulations. Computer-simulated microstructures were generated to reflect the variability observed in nanocomposite microstructures. The effect of waviness, agglomeration, and orientation of carbon nanotubes (CNTs) were investigated. Generated microstructures were converted to image-based 2D FEA models. Two hundred different realizations of microstructures were generated for each microstructure type to capture the stochastic response. The results confirm previously reported findings and experimental results. The results show that for a given fiber volume fraction, CNTs orientation, waviness, and agglomeration result in different elastic properties. It was shown that while a given microstructural feature will improve the elastic property, it will increase the variability in the elastic properties.

References

References
1.
Coleman
,
J. N.
,
Khan
,
U.
,
Blau
,
W. J.
, and
Gun'ko
,
Y. K.
,
2006
, “
Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites
,”
Carbon
,
44
(
9
), pp.
1624
1652
.
2.
Arash
,
B.
,
Wang
,
Q.
, and
Varadan
,
V. K.
,
2014
, “
Mechanical Properties of Carbon Nanotube/Polymer Composites
,”
Sci. Rep.
,
4
, pp.
1
8
.
3.
Corcione
,
C. E.
, and
Frigione
,
M.
,
2012
, “
Characterization of Nanocomposites by Thermal Analysis
,”
Materials
,
5
(
12
), pp.
2960
2980
.
4.
Burmistrov
,
I.
,
Gorshkov
,
N.
,
Ilinykh
,
I.
,
Muratov
,
D.
,
Kolesnikov
,
E.
,
Anshin
,
S.
,
Mazov
,
I.
,
Issi
,
J. P.
, and
Kusnezov
,
D.
,
2016
, “
Improvement of Carbon Black Based Polymer Composite Electrical Conductivity With Additions of MWCNT
,”
Compos. Sci. Technol.
,
129
, pp.
79
85
.
5.
Fei
,
G.
,
Gong
,
Q.
,
Li
,
D.
,
Lavorgna
,
M.
, and
Xia
,
H.
,
2017
, “
Relationship Between Electrical Conductivity and Spatial Arrangements of Carbon Nanotubes in Polystyrene Nanocomposites: The Effect of Thermal Annealing and Plasticization on Electrical Conductivity
,”
Compos. Sci. Technol.
,
146
, pp.
99
109
.
6.
Wang
,
X.
,
Bradford
,
P. D.
,
Liu
,
W.
,
Zhao
,
H.
,
Inoue
,
Y.
,
Maria
,
J. P.
,
Li
,
Q.
,
Yuan
,
F. G.
, and
Zhu
,
Y.
,
2011
, “
Mechanical and Electrical Property Improvement in CNT/Nylon Composites Through Drawing and Stretching
,”
Compos. Sci. Technol.
,
71
(
14
), pp.
1677
1683
.
7.
Prashantha
,
K.
,
Soulestin
,
J.
,
Lacrampe
,
M. F.
,
Krawczak
,
P.
,
Dupin
,
G.
, and
Claes
,
M.
,
2009
, “
Masterbatch-Based Multi-Walled Carbon Nanotube Filled Polypropylene Nanocomposites: Assessment of Rheological and Mechanical Properties
,”
Compos. Sci. Technol.
,
69
(
11–12
), pp.
1756
1763
.
8.
Dotchev
,
P.
,
Sanei
,
S. H. R.
,
Stienmetz
,
E.
, and
Williams
,
J.
,
2018
, “
Nanocomposites: Manufacturing, Microstructural Characterization and Mechanical Testing
,”
ASC 33rd Annual Technical Conference 18th US-Japan Conference on Composite Materials
, Seattle, WA, Sept. 24–28, pp. 1921–1933.
9.
Thostenson
,
E. T.
, and
Chou
,
T.-W.
,
2014
, “
On the Elastic Properties of Carbon Nanotube-Based Composites: Modelling and Characterization
,”
J. Phys. D: Appl. Phys.
,
36
(
5
), pp.
573
582
.
10.
Gojny
,
F.
,
Wichmann
,
M.
,
Fiedler
,
B.
, and
Schulte
,
K.
,
2005
, “
Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2300
2313
.
11.
Gojnya
,
F. H.
,
Wichmanna
,
M. H. G.
,
Köpkeb
,
U.
,
Fiedlera
,
B.
, and
Schultea
,
K.
,
2004
, “
Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content
,”
Compos. Sci. Technol.
,
64
(
15
), pp.
2363
2371
.
12.
Mazlan
,
N.
,
Jaafar
,
M.
,
Aziz
,
A.
,
Ismail
,
H.
, and
Busfield
,
J. J. C.
,
2016
, “
Effects of Different Processing Techniques on Multi-Walled Carbon Nanotubes/Silicone Rubber Nanocomposite on Tensile Strength Properties
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
152
(
1
), p.
012060
.
13.
Yuan
,
C.
,
Chen
,
G.
, and
Yang
,
J.
,
2012
, “
Orientation Structures in Injection-Molded Pellets of Polystyrene/Carbon Nanotube Nanocomposites
,”
Ind. Eng. Chem. Res.
,
51
(
36
), pp.
11695
11699
.
14.
Song
,
S. H.
,
Kyun
,
J. H.
,
Gu
,
K. Y.
, and
Cho
,
C.-T.
,
2010
, “
Physical and Chemical Characteristics of Multi-Walled Carbon Nanotube(MWCNT) With Acid-Treatment and Coupling Agent on the Properties of Styrene Butadiene Rubber (SBR)
,”
Polymer
,
34
(
2
), pp.
108
115
.
15.
Shi
,
D.-L.
,
Feng
,
X.-Q.
,
Huang
,
Y. Y.
,
Hwang
,
K.-C.
, and
Gao
,
H.
,
2004
, “
The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites
,”
ASME J. Eng. Mater. Technol.
,”
126
(
3
), pp.
250
257
.
16.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
,
2010
, “
Stochastic Multi-Scale Modeling of CNT/Polymer Composites
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
437
446
.
17.
Savvas
,
D.
,
Stefanou
,
G.
,
Papadopoulos
,
V.
, and
Papadrakakis
,
M.
,
2016
, “
Effect of Waviness and Orientation of Carbon Nanotubes on Random Apparent Material Properties and RVE Size of CNT Reinforced Composites
,”
Compos. Struct.
,
152
, pp.
870
882
.
18.
Bai
,
J. B.
, and
Allaoui
,
A.
,
2003
, “
Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation
,”
Compos. Part A: Appl. Sci. Manuf.
,
34
(
8
), pp.
689
694
.
19.
Rahmat
,
M.
, and
Hubert
,
P.
,
2011
, “
Carbon Nanotube-Polymer Interactions in Nanocomposites: A Review
,”
Compos. Sci. Technol.
,
72
(
1
), pp.
72
84
.
20.
Song
,
Y. S.
, and
Youn
,
J. R.
,
2006
, “
Modeling of Effective Elastic Properties for Polymer Based Carbon Nanotube Composites
,”
Polymer
,
47
(
5
), pp.
1741
1748
.
21.
Sanei
,
S. H. R.
, and
Fertig
,
R. S.
,
2015
, “
Uncorrelated Volume Element for Stochastic Modeling of Microstructures Based on Local Fiber Volume Fraction Variation
,”
Compos. Sci. Technol.
,
117
, pp.
191
198
.
22.
Shajari
,
A. R.
,
Ghajar
,
R.
, and
Shokrieh
,
M. M.
,
2018
, “
Multiscale Modeling of the Viscoelastic Properties of CNT/Polymer Nanocomposites, Using Complex and Time-Dependent Homogenizations
,”
Comput. Mater. Sci.
,
142
, pp.
395
409
.
23.
Legrain
,
G.
,
Cartraud
,
P.
,
Perreard
,
I.
, and
Moës
,
N.
,
2011
, “
An X-FEM and Level Set Computational Approach for Image-Based Modelling: Application to Homogenization
,”
Int. J. Numer. Methods Eng.
,
86
(
7
), pp.
915
934
.
24.
Babin
,
P.
,
Valle
,
G. D.
,
Dendievel
,
R.
,
Lassoued
,
N.
, and
Salvo
,
L.
,
2005
, “
Mechanical Properties of Bread Crumbs From Tomography Based Finite Element Simulations
,”
J. Mater. Sci.
,
40
(
22
), pp.
5867
5873
.
25.
Camacho
,
D. L. A.
,
Hopper
,
R. H.
,
Lin
,
G. M.
, and
Myers
,
B. S.
,
1997
, “
An Improved Method for Finite Element Mesh Generation of Geometrically Complex Structures With Application to the Skullbase
,”
J. Biomech.
,
30
(
10
), pp.
1067
1070
.
26.
Cebral
,
J. R.
, and
Lohner
,
R.
,
2001
, “
From Medical Images to Anatomically Accurate Finite Element Grids
,”
Int. J. Numer. Methods Eng.
,
51
(
8
), pp.
985
1008
.
27.
Charras
,
G. T.
, and
Guldberg
,
R. E.
,
2000
, “
Improving the Local Solution Accuracy of Large-Scale Digital Image-Based Finite Element Analyses
,”
J. Biomech.
,
33
(
2
), pp.
255
259
.
28.
Keyak
,
J. H.
,
Meagher
,
J. M.
,
Skinner
,
H. B.
, and
Mote
,
C. D.
,
1990
, “
Automated Three Dimensional Finite Element Modelling of Bone: A New Method
,”
ASME J. Biomed. Eng.
,
12
(
5
), pp.
389
397
.
29.
Kim
,
H. J.
, and
Swan
,
C. C.
,
2003
, “
Voxel-Based Meshing and Unit-Cell Analysis of Textile Composites
,”
Int. J. Numer. Methods Eng.
,
56
(
7
), pp.
977
1006
.
30.
Lewis
,
A. C.
, and
Geltmacher
,
A. B.
,
2006
, “
Image-Based Modeling of the Response of Experimental 3D Microstructures to Mechanical Loading
,”
Scr. Mater.
,
55
(
1
), pp.
81
85
.
31.
Maire
,
E.
,
2003
, “
X-Ray Tomography Applied to the Characterization of Cellular Materials. Related Finite Element Modeling Problems
,”
Compos. Sci. Technol.
,
63
(
16
), pp.
2431
2443
.
32.
Mishnaevsky
,
L. L.
,
2005
, “
Automatic Voxel-Based Generation of 3D Microstructural FE Models and Its Application to the Damage Analysis of Composites
,”
Mater. Sci. Eng.: A
,
407
(
1–2
), pp.
11
23
.
33.
Young
,
P. G.
,
Beresford-West
,
T. B.
,
Coward
,
S. R.
,
Notarberardino
,
B.
,
Walker
,
B.
, and
Abdul-Aziz
,
A.
,
2008
, “
An Efficient Approach to Converting Three-Dimensional Image Data Into Highly Accurate Computational Models
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
366
(
1878
), pp.
3155
–31
73
.
34.
Lu
,
J. P.
,
1997
, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
,
79
(
7
), pp.
1297
1300
.
35.
Schwarz
,
G.
,
1978
, “
Estimating the Dimension of a Model
,”
Ann. Stat.
,
6
(
2
), pp.
461
464
.
36.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
716
723
.
You do not currently have access to this content.