This paper describes the stochastic elastic property evaluation of a resin structure, which is made using the fused deposition modeling (FDM) method, through experimental and numerical tests. The FDM method is an additive manufacturing method, and it enables the fabrication of complex shaped structures at a low cost. However, a resin structure that is made using the FDM method has a complex microstructure, and a multiscale problem must be considered for the evaluation of its mechanical properties. In addition, if the microstructure is not well controlled compared to the structure obtained using a conventional processing technique, a multiscale stochastic problem should be also considered. In this paper, first, the randomness in a resin specimen manufactured using the FDM method is experimentally investigated, and the necessity of considering the microscopic randomness for the mechanical property evaluation of the resin structure is discussed. Next, appropriate numerical modeling for evaluating the probabilistic property of an apparent elastic property of the specimen (as a mechanical property of the resin structure made using the FDM method) is discussed, along with a comparison between the experimental results and the numerical results obtained using the Monte Carlo simulation with several analysis models. Based on the results, the effectiveness of the evaluation using a detailed hierarchical modeling is discussed. In addition, the perturbation-based hierarchical stochastic homogenization analysis is performed, and the applicability of the method is discussed based on the numerical results.

References

References
1.
Lee
,
C. S.
,
Kim
,
S. G.
,
Kim
,
H. J.
, and
Ahn
,
S. H.
,
2007
, “
Measurement of Anisotropic Compressive Strength of Rapid Prototyping Parts
,”
J. Mater. Process. Technol.
,
187-188
, pp.
627
630
.
2.
Tymrak
,
B. M.
,
Kreiger
,
M.
, and
Pearce
,
J. N.
,
2014
, “
Mechanical Properties of Components Fabricated With Open-Source 3-D Printers Under Realistic Environmental Conditions
,”
Mater. Des.
,
58
, pp.
242
246
.
3.
Walker
,
J. M.
,
Bodamer
,
E.
,
Kleinfehn
,
A.
,
Luo
,
Y.
,
Becker
,
M.
, and
Dean
,
D.
,
2017
, “
Design and Mechanical Characterization of Solid and Highly Porous 3D Printed Poly(Propylene Fumarate) Scaffolds
,”
Prog. Addit. Manuf.
,
2
(
1-2
), pp.
99
108
.
4.
Kaminski
,
M.
, and
Kleiber
,
M.
,
1996
, “
Stochastic Structural Interface Defects in Fiber Composites
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
3035
3056
.
5.
Ostojya
,
M. S.
,
1998
, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
,
35
(
19
), pp.
2429
2455
.
6.
Kaminski
,
M.
, and
Kleiber
,
M.
,
2000
, “
Perturbation Based Stochastic Finite Element Method for Homogenization of Two-Phase Elastic Composites
,”
Comput. Struct.
,
78
, pp.
811
826
.
7.
Xu
,
X. F.
, and
Brady
,
L. G.
,
2006
, “
Computational Stochastic Homogenization of Random Media Elliptic Problems Using Fourier Galerkin Method
,”
Finite Elem. Anal. Des.
,
42
(
7
), pp.
613
622
.
8.
Sakata
,
S.
,
Ashida
,
F.
,
Kojima
,
T.
, and
Zako
,
M.
,
2008
, “
Three-Dimensional Stochastic Analysis Using a Perturbation-Based Homogenization Method for Homogenized Elastic Property of Inhomogeneous Material Considering Microscopic Uncertainty
,”
Int. J. Solids Struct.
,
45
(
3–4
), pp.
894
907
.
9.
Xu
,
F. X.
,
Chen
,
X.
, and
Shen
,
L.
,
2009
, “
A Green-Function-Based Multiscale Method for Uncertainty Quantification of Finite Body Random Heterogeneous Materials
,”
Comput. Struct.
,
87
(
2–-22
), pp.
1416
1426
.
10.
Tootkaboni
,
M.
, and
Brady
,
L. G.
,
2010
, “
A Multi-Scale Spectral Stochastic Method for Homogenization of Multi-Phase Periodic Composites With Random Material Properties
,”
Int. J. Numer. Methods Eng.
,
83
, pp.
59
90
.
11.
Ma
,
J.
,
Temizer
,
I.
, and
Wriggers
,
P.
,
2011
, “
Random Homogenization Analysis in Linear Elasticity Based on Analytical Bounds and Estimates
,”
Int. J. Solids Struct.
,
48
(
2
), pp.
280
291
.
12.
Sakata
,
S.
,
Ashida
,
F.
, and
Ohsumimoto
,
K.
,
2013
, “
Stochastic Homogenization Analysis of a Porous Material With the Perturbation Method Considering a Microscopic Geometrical Random Variation
,”
Int. J. Mech. Sci.
,
77
, pp.
145
154
.
13.
Sakata
,
S.
,
Ashida
,
F.
, and
Ohsumimoto
,
K.
,
2013
, “
Multiscale Stochastic Stress Analysis of a Porous Material With the Perturbation-Based Stochastic Homogenization Method for a Microscopic Geometrical Random Variation
,”
J. Comput. Sci. Technol.
,
7
(
1
), pp.
99
112
.
14.
Yang
,
Z.
,
Cui
,
J.
,
Sun
,
Y.
,
Liu
,
Y.
, and
Xiao
,
Y.
,
2017
, “
A Stochastic Multiscale Method for Thermo-Mechanical Analysis Arising From Random Porous Material With Interior Surface Radiation
,”
Adv. Eng. Software
,
104
, pp.
12
27
.
15.
Maiti
,
A.
,
Small
,
W.
,
Lewicki
,
J. P.
,
Weisgraber
,
T. H.
,
Duoss
,
E. B.
,
Chinn
,
S. C.
,
Pearson
,
M. A.
,
Spadaccini
,
C. M.
,
Maxwell
,
R. S.
, and
Wilson
,
T. S.
,
2016
, “
3D Printed Cellular Solid Outperforms Traditional Stochastic Foam in Long-Term Mechanical Response
,”
Sci. Rep.
,
6
, p.
24871
.
16.
Maliaris
,
G.
, and
Sarafis
,
E.
,
2016
, “
Mechanical Behavior of 3D Printed Stochastic Lattice Structures
,”
Solid State Phenom.
,
258
, pp.
225
228
.
17.
Goes
,
F. B.
, and
Ritto
,
T. G.
,
2018
, “
Modeling, Experimental Test, and Stochastic Analysis of Beams With Resonators
,” Joint ICVRAM ISUMA Uncertainties Conference, Florianópolis
, Santa Catarina, Brazil, Apr. 8–11, pp. 1–9.
18.
Guedes
,
M.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
.
19.
Press
,
W. H.
,
Teukolski
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1993
,
Numerical Recipes in C (Japanese Edition)
,
Gijutsu-Hyoron Sha
, Tokyo, Japan.
20.
Mersenne Twister, 2018, “
Mersenne Twister
,” accessed Apr. 16, 2019, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
21.
Kaminski
,
M.
,
2013
,
The Stochastic Perturbation Method for Computational Mechanics
,
Wiley
, Chichester, UK.
22.
Sakata
,
S.
,
Okuda
,
K.
, and
Ikeda
,
K.
,
2015
, “
Stochastic Analysis of Laminated Compote Plate Considering Stochastic Homogenization Problem
,”
Front. Struct. Civ. Eng.
,
9
(
2
), pp.
141
153
.
23.
Sakata
,
S.
, and
Ashida
,
F.
,
2011
, “
Hierarchical Stochastic Homogenization Analysis of a Particle Reinforced Composite Material Considering Non-Uniform Distribution of Microscopic Random Quantities
,”
Comput. Mech.
,
48
(
5
), pp.
529
540
.
24.
Kaminski
,
M.
,
2007
, “
Generalized Perturbation-Based Stochastic Finite Element Method in Elastostatics
,”
Comput. Struct.
,
85
(
10
), pp.
586
594
.
25.
Sakata
,
S.
, and
Torigoe
,
I.
,
2015
, “
A Successive Perturbation-Based Multiscale Stochastic Analysis Method for Composite Materials
,”
Finite Elem. Anal. Des.
,
102
, pp.
74
84
.
You do not currently have access to this content.