The uncertain free vibration analysis of engineering structures with the consideration of nonstochastic spatially dependent uncertain parameters is investigated. A recently proposed concept of interval field is implemented to model the intrinsic spatial dependency of the uncertain-but-bounded system parameters. By employing the appropriate discretization scheme, evaluations of natural frequencies for engineering structures involving interval fields can be executed within the framework of the finite element method. Furthermore, a robust, yet efficient, computational strategy is proposed such that the extreme bounds of natural frequencies of the structure involving interval fields can be rigorously captured by performing two independent eigen-analyses. Within the proposed computational analysis framework, the traditional interval arithmetic is not employed so that the undesirable effect of the interval overestimation can be completely eliminated. Consequently, both sharpness and physical feasibility of the results can be guaranteed to a certain extent for any discretized interval field. The plausibility of the adopted interval field model, as well as the feasibility of the proposed computational scheme, is clearly demonstrated by investigating both academic-sized and practically motivated engineering structures.

References

References
1.
Möller
,
B.
, and
Beer
,
M.
,
2008
, “
Engineering Computation Under Uncertainty–Capabilities of Non-Traditional Models
,”
Comput. Struct.
,
86
(
10
), pp.
1024
1041
.
2.
Wu
,
D.
,
Gao
,
W.
,
Feng
,
J.
, and
Luo
,
K.
,
2016
, “
Structural Behaviour Evolution of Composite Steel-Concrete Curved Structure With Uncertain Creep and Shrinkage Effects
,”
Compos. Part B: Eng.
,
86
, pp.
261
272
.
3.
Gao
,
W.
,
Song
,
C.
, and
Tin-Loi
,
F.
,
2010
, “
Probabilistic Interval Analysis for Structures With Uncertainty
,”
Struct. Saf.
,
32
(
3
), pp.
191
199
.
4.
Wu
,
D.
,
Liu
,
A.
,
Huang
,
Y.
,
Huang
,
Y.
,
Pi
,
Y.
, and
Gao
,
W.
,
2018
, “
Dynamic Analysis of Functionally Graded Porous Structures Through Finite Element Analysis
,”
Eng. Struct.
,
165
, pp.
287
301
.
5.
Ibrahim
,
R. A.
,
1987
, “
Structural Dynamics With Parameter Uncertainties
,”
ASME Appl. Mech. Rev.
,
40
(
3
), pp.
309
328
.
6.
Shinozuka
,
M.
,
1972
, “
Monte Carlo Solution of Structural Dynamics
,”
Comput. Struct.
,
2
(
5–6
), pp.
855
874
.
7.
Székely
,
G. S.
, and
Schuëller
,
G. I.
,
2001
, “
Computational Procedure for a Fast Calculation of Eigenvectors and Eigenvalues of Structures With Random Properties
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
8–10
), pp.
799
816
.
8.
Singh
,
B. N.
,
Bisht
,
A. K. S.
,
Pandit
,
M. K.
, and
Shukla
,
K. K.
,
2009
, “
Nonlinear Free Vibration Analysis of Composite Plates With Material Uncertainties: A Monte Carlo Simulation Approach
,”
J. Sound Vib.
,
324
(
1–2
), pp.
126
138
.
9.
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2007
, “
Random Matrix Eigenvalue Problems in Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
69
(
3
), pp.
562
591
.
10.
Rong
,
B.
,
Rui
,
X.
, and
Tao
,
L.
,
2012
, “
Perturbation Finite Element Transfer Matrix Method for Random Eigenvalue Problems of Uncertain Structures
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021005
.
11.
Muscolino
,
G.
,
Sofi
,
A.
, and
Giunta
,
F.
,
2018
, “
Dynamics of Structures With Uncertain-But-Bounded Parameters Via Pseudo-Static Sensitivity Analysis
,”
Mechanical Systems and Signal Processing
,
111
, pp.
1
22
.
12.
Gao
,
W.
,
Chen
,
J. J.
,
Cui
,
M. T.
, and
Cheng
,
Y.
,
2005
, “
Dynamic Response Analysis of Linear Stochastic Truss Structures Under Stationary Random Excitation
,”
J. Sound Vib.
,
281
(
1–2
), pp.
311
321
.
13.
Nair
,
P. B.
, and
Keane
,
A. J.
,
2003
, “
An Approximate Solution Scheme for the Algebraic Random Eigenvalue Problem
,”
J. Sound Vib.
,
260
(
1
), pp.
45
65
.
14.
Kamiński
,
M. M.
, and
Szafran
,
J.
,
2009
, “
Random Eigenvibrations of Elastic Structures by the Response Function Method and the Generalized Stochastic Perturbation Technique
,”
Arch. Civil Mech. Eng.
,
9
(
4
), pp.
5
32
.
15.
Oh
,
D. H.
, and
Librescu
,
L.
,
1997
, “
Free Vibration and Reliability of Composite Cantilevers Featuring Uncertain Properties
,”
Reliab. Eng. Syst. Saf.
,
56
(
3
), pp.
265
272
.
16.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
, “
Stochastic Finite Element Method: Response Statistics
,”
Stochastic Finite Elements: A Spectral Approach
, Springer, New York.
17.
Oja
,
E.
, and
Karhunen
,
J.
,
1985
, “
On Stochastic Approximation of the Eigenvectors and Eigenvalues of the Expectation of a Random Matrix
,”
J. Math. Anal. Appl.
,
106
(
1
), pp.
69
84
.
18.
Verhoosel
,
C. V.
,
Gutiérrez
,
M. A.
, and
Hulshoff
,
S. J.
,
2006
, “
Iterative Solution of the Random Eigenvalue Problem With Application to Spectral Stochastic Finite Element Systems
,”
Int. J. Numer. Methods Eng.
,
68
(
4
), pp.
401
424
.
19.
Ghanem
,
R.
, and
Ghosh
,
D.
,
2007
, “
Efficient Characterization of the Random Eigenvalue Problem in a Polynomial Chaos Decomposition
,”
Int. J. Numer. Methods Eng.
,
72
(
4
), pp.
486
504
.
20.
Soize
,
C.
,
2013
, “
Stochastic Modeling of Uncertainties in Computational Structural Dynamics—Recent Theoretical Advances
,”
J. Sound Vib.
,
332
(
10
), pp.
2379
2395
.
21.
Beer
,
M.
,
Ferson
,
S.
, and
Kreinovich
,
V.
,
2013
, “
Imprecise Probabilities in Engineering Analyses
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
4
29
.
22.
Wu
,
D.
,
Gao
,
W.
,
Tangaramvong
,
S.
, and
Tin-Loi
,
F.
,
2014
, “
Robust Stability Analysis of Structures With Uncertain Parameters Using Mathematical Programming Approach
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
720
745
.
23.
Jiang
,
C.
,
Zhang
,
Z.
,
Han
,
X.
, and
Liu
,
J.
,
2013
, “
A Novel Evidence-Theory-Based Reliability Analysis Method for Structures With Epistemic Uncertainty
,”
Comput. Struct.
,
129
, pp.
1
12
.
24.
Wu
,
D.
,
Gao
,
W.
,
Li
,
G.
,
Tangaramvong
,
S.
, and
Tin-Loi
,
F.
,
2015
, “
Robust Assessment of Collapse Resistance of Structures Under Uncertain Loads Based on Info-Gap Model
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
208
227
.
25.
Wang
,
C.
,
Gao
,
W.
,
Song
,
C.
, and
Zhang
,
N.
,
2014
, “
Stochastic Interval Analysis of Natural Frequency and Mode Shape of Structures With Uncertainties
,”
J. Sound Vib.
,
333
(
9
), pp.
2483
2503
.
26.
Huang
,
Y.
, and
Liu
,
Y.
,
2018
, “
An Analytical Model for Solving Generalized Interval Eigenvalue Problem
,”
Appl. Math. Modell.
,
61
, pp.
18
28
.
27.
Chen
,
S. H.
,
Lian
,
H. D.
, and
Yang
,
X. W.
,
2003
, “
Interval Eigenvalue Analysis for Structures With Interval Parameters
,”
Finite Elem. Anal. Des.
,
39
(
5–6
), pp.
419
431
.
28.
Qiu
,
Z.
, and
Wang
,
X.
,
2005
, “
Solution Theorems for the Standard Eigenvalue Problem of Structures With Uncertain-But-Bounded Parameters
,”
J. Sound Vib.
,
282
(
1–2
), pp.
381
399
.
29.
Gao
,
W.
,
2006
, “
Interval Natural Frequency and Mode Shape Analysis for Truss Structures With Interval Parameters
,”
Finite Elem. Anal. Des.
,
42
(
6
), pp.
471
477
.
30.
Leng
,
H.
,
He
,
Z.
, and
Yuan
,
Q.
,
2008
, “
Computing Bounds to Real Eigenvalues of Real‐Interval Matrices
,”
Int. J. Numer. Methods Eng.
,
74
(
4
), pp.
523
530
.
31.
Modares
,
M.
,
Mullen
,
R. L.
, and
Muhanna
,
R. L.
,
2006
, “
Natural Frequencies of a Structure With Bounded Uncertainty
,”
J. Eng. Mech.
,
132
(
12
), pp.
1363
1371
.
32.
Sofi
,
A.
,
Muscolino
,
G.
, and
Elishakoff
,
I.
,
2015
, “
Natural Frequencies of Structures With Interval Parameters
,”
J. Sound Vib.
,
347
, pp.
79
95
.
33.
Muscolino
,
G.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2013
, “
One-Dimensional Heterogeneous Solids With Uncertain Elastic Modulus in Presence of Long-Range Interactions: Interval Versus Stochastic Analysis
,”
Comput. Struct.
,
122
, pp.
217
229
.
34.
Verhaeghe
,
W.
,
Desmet
,
W.
,
Vandepitte
,
D.
, and
Moens
,
D.
,
2013
, “
Interval Fields to Represent Uncertainty on the Output Side of a Static FE Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
260
, pp.
50
62
.
35.
Sofi
,
A.
, and
Muscolino
,
G.
,
2015
, “
Static Analysis of Euler–Bernoulli Beams With Interval Young's Modulus
,”
Comput. Struct.
,
156
, pp.
72
82
.
36.
Jiang
,
C.
,
Ni
,
B. Y.
,
Han
,
X.
, and
Tao
,
Y. R.
,
2014
, “
Non-Probabilistic Convex Model Process: A New Method of Time-Variant Uncertainty Analysis and Its Application to Structural Dynamic Reliability Problems
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
656
676
.
37.
Jiang
,
C.
,
Ni
,
B. Y.
,
Liu
,
N. Y.
,
Han
,
X.
, and
Liu
,
J.
,
2016
, “
Interval Process Model and Non-Random Vibration Analysis
,”
J. Sound Vib.
,
373
, pp.
104
131
.
38.
Wu
,
D.
,
Liu
,
A.
,
Huang
,
Y.
,
Huang
,
Y.
,
Pi
,
Y.
, and
Gao
,
W.
,
2018
, “
Mathematical Programming Approach for Uncertain Linear Elastic Analysis of Functionally Graded Porous Structures With Interval Parameters
,”
Composites, Part B
,
152
, pp.
282
291
.
39.
Wu
,
D.
,
Gao
,
W.
,
Wang
,
C.
,
Tangaramvong
,
S.
, and
Tin-Loi
,
F.
,
2016
, “
Robust Fuzzy Structural Safety Assessment Using Mathematical Programming Approach
,”
Fuzzy Sets Syst.
,
293
, pp.
30
49
.
40.
Wu
,
B.
,
Wu
,
D.
,
Gao
,
W.
, and
Song
,
C.
,
2016
, “
Time-Variant Random Interval Response of Concrete-Filled Steel Tubular Composite Curved Structures
,”
Compos. Part B: Eng.
,
94
, pp.
122
138
.
41.
Wu
,
D.
,
Gao
,
W.
,
Song
,
C.
, and
Tangaramvong
,
S.
,
2016
, “
Probabilistic Interval Stability Assessment for Structures With Mixed Uncertainty
,”
Struct. Saf.
,
58
, pp.
105
118
.
42.
Wu
,
D.
,
Gao
,
W.
,
Tin-Loi
,
F.
, and
Pi
,
Y. L.
,
2016
, “
Probabilistic Interval Limit Analysis for Structures With Hybrid Uncertainty
,”
Eng. Struct.
,
114
, pp.
195
208
.
43.
Wu
,
D.
, and
Gao
,
W.
,
2017
, “
Uncertain Static Plane Stress Analysis With Interval Fields
,”
Int. J. Numer. Methods Eng.
,
110
(
13
), pp.
1272
1300
.
44.
Wu
,
D.
, and
Gao
,
W.
,
2017
, “
Hybrid Uncertain Static Analysis With Random and Interval Fields
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
222
246
.
45.
Vanmarcke
,
E.
, and
Grigoriu
,
M.
,
1983
, “
Stochastic Finite Element Analysis of Simple Beams
,”
J. Eng. Mech.
,
109
(
5
), pp.
1203
1214
.
46.
Feng
,
J.
,
Wu
,
D.
,
Gao
,
W.
, and
Li
,
G.
,
2018
, “
Hybrid Uncertain Natural Frequency Analysis for Structures With Random and Interval Fields
,”
Comput. Methods Appl. Mech. Eng.
,
328
, pp.
365
389
.
47.
Xia
,
B.
,
Qin
,
Y.
,
Yu
,
D.
, and
Jiang
,
C.
,
2016
, “
Dynamic Response Analysis of Structure Under Time-Variant Interval Process Model
,”
J. Sound Vib.
,
381
, pp.
121
138
.
48.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.
49.
ANSYS, Inc.
,
2013
, “
ANSYS Mechanical APDL Structural Analysis Guide, Release 15.0
,” ANSYS Inc., Canonsburg, PA.
50.
Engwirda
,
D.
,
2014
, “
Locally Optimal Delaunay-Refinement and Optimisation-Based Mesh Generation
,” Ph.D. thesis, School of Mathematics and Statistics, The University of Sydney, Sydney, Australia.
You do not currently have access to this content.