Predicting of hazards associated with the damages of fuel storage tanks in petroleum refineries is critical in maintaining safety of the facilities. This study assesses the hazard of the refinery gasoline tank damage by augmented mathematical and semi-experimental methods. This research evaluates complete content release of the reservoir tank scenario in a given time, as the worst case. Environment conditions are evaluated as affecting factors on the progression of the scenario. Comparison between the results of numerical simulations for pool fire as well as vapor cloud explosion with the results of simulation based on empirical-mathematical models indicates noticeable differences between the results in the vicinity of the boundary conditions; however, with increasing the distance from the center of the accident point, this difference decreases markedly.

References

References
1.
Muñoz
,
M.
,
Arnaldos
,
J.
,
Casal
,
J.
, and
Planas
,
E.
,
2004
, “
Analysis of the Geometric and Radiative Characteristics of Hydrocarbon Pool Fires
,”
Combust. Flame
,
139
(
3
), pp.
263
277
.
2.
Sharma
,
R. K.
,
Gurjar
,
B. R.
,
Wate
,
S. R.
,
Ghuge
,
S. P.
, and
Agrawal
,
R.
,
2013
, “
Assessment of an Accidental Vapour Cloud Explosion
,”
J. Loss Prev. Process Ind.
,
26
(
1
), pp.
82
90
.
3.
Assael
,
M. J.
, and
Kakosimos
,
K. E.
,
2010
, “Fires, Explosions, and Toxic Gas Dispersions,”
CRC Press
, Clifton, NJ.
4.
Atkinson
,
G.
,
Gant
,
S.
,
Painter
,
D.
,
Shirvill
,
L.
, and
Ungut
,
A.
,
2008
, “
Liquid Dispersal and Vapor Production During Overfilling Incidents
,”
Inst. Chem. Eng. Symp. Ser.
,
154
, p.
522
.
5.
Baker
,
W. E.
,
Cox
,
P. A.
,
Kulesz
,
J. J.
,
Strehlow
,
R. A.
, and
Westine
,
P. S.
,
2012
,
Explosion Hazards and Evaluation
, Vol.
5
,
Elsevier
, Amsterdam, The Netherlands.
6.
Board
,
B. M. I. I..
,
2005
, “Buncefield Major Incident Investigation: Initial Report to the Health and Safety Commission and the Environment Agency of the Investigation Into the Explosions and Fires at the Buncefield Oil Storage and Transfer Depot, Hemel Hempstead, on 11 December 2005,” The Health and Safety Executive/Environment Agency, Hertfordshire, UK,
epub
.
7.
Bouchard
,
J. K.
,
1983
, “
Gasoline Storage Tank Explosion and Fire
,” Fire Protection Specialist National Fire Protection Association, Newark, NJ,
Report
.
8.
American Institute of Chemical Engineers,
1996
,
Guidelines for Use of Vapor Cloud Dispersion Models
,
Wiley-AIChE
, New York.
9.
Ree
,
S.
, and
Kang
,
T.
,
2014
, “
Prediction of Gas Explosion Overpressure Interacting With Structures for Blast-Resistant Design
,” Advances in Civil, Enviornmental and Materials Research (
ACEM
14), Busan, South Korea, Aug. 24–8.
10.
Mercx
,
W. P. M.
,
Van den Berg
,
A. C.
,
Hayhurst
,
C. J.
,
Robertson
,
N. J.
, and
Moran
,
K. C.
,
2000
, “
Developments in Vapor Cloud Explosion Blast Modeling
,”
J. Hazard. Mater.
,
71
(
1–3
), pp.
301
319
.
11.
Melton
,
T. A.
, and
Marx
,
J. D.
,
2009
, “
Withdrawn: A Systematic Method for Modeling Explosion Overpressures
,”
J. Loss Prev. Process Ind.
,
XXX
, pp.
1
6
.
12.
Sinai
,
Y.
,
Stopford
,
P.
,
Edwards
,
M.
, and
Watkins
,
S.
,
2003
, “
CFD Modeling of Fire Suppression by Water Spray: Sensitivity and Validation for a Pool Fire in a Room
,” Ninth International Fire Science & Engineering Conference, Eindhoven, The Netherlands, pp. 1445–1451
13.
Abdolhamidzadeh
,
B.
,
Bab
,
V.
,
Rashtchian
,
D.
, and
Reniers
,
G.
,
2013
, “
Fire Dynamics Simulation of Multiple Ethanol Pool Fires
,”
Res. J. Chem. Environ.
,
17
(
9
), pp.
3
9
.
14.
Galeev
,
A. D.
,
Starovoytova
,
E. V.
, and
Ponikarov
,
S. I.
,
2013
, “
Numerical Simulation of the Consequences of Liquefied Ammonia Instantaneous Release Using FLUENT Software
,”
Process. Saf. Environ. Prot.
,
91
(
3
), pp.
191
201
.
15.
Haghnazarloo
,
H.
,
Parvini
,
M.
, and
Lotfollahi
,
M. N.
,
2015
, “
Consequence Modeling of a Real Rupture of Toluene Storage Tank
,”
J. Loss Prev. Process Ind.
,
37
, pp.
11
18
.
16.
Liu
,
Y.
,
Olewski
,
T.
, and
Véchot
,
L. N.
,
2015
, “
Modeling of a Cryogenic Liquid Pool Boiling by CFD Simulation
,”
J. Loss Prev. Process Ind.
,
35
, pp.
125
134
.
17.
Hansen
,
O. R.
,
Kjellander
,
M. T.
,
Martini
,
R.
, and
Pappas
,
J. A.
,
2016
, “
Estimation of Explosion Loading on Small and Medium Sized Equipment From CFD Simulations
,”
J. Loss Prev. Process Ind.
,
41
, pp.
382
398
.
18.
Mohammad
,
M. P.
,
Mehrzad
,
A.
, and
Soleimani
,
M.
,
2016
, “Deterministic Hazard Evaluation for Natural Gas Pipes Failure,”
ASME
Paper No. IMECE2016-67161.
19.
Zhu
,
H.
,
Mao
,
Z.
,
Wang
,
Q.
, and
Sun
,
J.
,
2013
, “
The Influences of Key Factors on the Consequences Following the Natural Gas Leakage From Pipeline
,”
Procedia Eng.
,
62
, pp.
592
601
.
20.
Yang
,
S.
,
Fang
,
Q.
,
Wu
,
H.
, and
Zhang
,
Y.
,
2013
, “
An Integrated Quantitative Hazard Analysis Method for Natural Gas Jet Release From Underground Gas Storage Caverns in Salt Rock—I: Models and Validation
,”
J. Loss Prev. Process Ind.
,
26
(
1
), pp.
74
81
.
21.
Gheyasi
,
S. M.
,
Pourgol-Mohammad
,
M.
,
Zarghami
,
R.
, and
Alizadeh
,
R.
,
2014
, “
Modified-Layer of Protection Analysis; Application on Gas Condensate Stabilization Facility
,”
Fifth National HSE Symposium
, Tehran, Iran, Mar. 3–5.
22.
Tan
,
Z.
,
Li
,
J.
, and
Hu
,
G.
,
2014
, “
Risk Assessment and Countermeasures of Gas Accidents in the Sensitive Areas Under Control During the Olympic Games in Beijing
,”
Saf. Sci.
,
62
, pp.
187
204
.
23.
Gheyasi
,
S. M.
, and
Pourgol-Mohammad
,
M.
,
2014
, “
Modified Layer of Protection Analysis for Nuclear Safety Assessment
,”
ASME
Paper No. ICONE22-30828
.
24.
Gheyasi
,
S. M.
, and
Pourgol-Mohammad
,
M.
,
2014
, “
Modified-LOPA; a Pre-Processing Approach for Nuclear Power Plants
,” Probabilistic Safety Assessment and Management, Honolulu, HI, June.
25.
PHAST, DNV
,
2012
, “
Version 6.7 Software
,” London.
26.
Mudan
,
K. S.
, and
Croce
,
P. A.
,
1986
, “
Calculating Impacts for Large Open Hydrocarbon Fires
,”
Fire Saf. J.
,
11
(
1–2
), pp.
99
112
.
27.
CCPS,
1994
,
Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions
,
Flash Fires and BLEVEs, AIChE
,
New York
.
28.
Van den Bosch
,
C. J. H.
, and
Weterings
,
R. A. P. M.
, eds.,
1997
, Methods for the Calculation of Physical Effects: Due to Releases of Hazardous Materials (liquids and Gases): Yellow Book, Directorate-General for Social Affairs and Employment, Committee for the Prevention of Disasters.
29.
Lee
,
E. L.
,
Hornig
,
H. C.
, and
Kury
,
J. W.
,
1968
, “
Adiabatic Expansion of High Explosive Detonation Products
,” Univ. of California Radiation Lab. at Livermore, Livermore, CA, Report No.
UCRL–50422
.
30.
Dobratz
,
B. M.
,
1972
, “
Properties of Chemical Explosives and Explosive Simulants
,” Lawrence Livermore Lab, Livermore, CA, Report No. UCRL–51319.
31.
Committee for the Prevention of Disasters
,
1999
,
Guidelines for Quantitative Risk Analysis
,
(The “Purple Book”), SDU
,
Hague, The Netherlands
.
32.
Casal
,
J.
,
2007
, “
Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants
,” Vol.
8
,
Elsevier
, Amsterdam, The Netherlands.
33.
Chiew
,
H. Z.
,
2013
, “
Fire Dynamics Simulation (FDS) Study of Fire in Structures With Curved Geometry
,” Ph.D. dissertation, UTAR, Kampar, Malaysia.
34.
Son
,
J.
, and
Lee
,
H. J.
,
2011
, “
Performance of Cable-Stayed Bridge Pylons Subjected to Blast Loading
,”
Eng. Struct.
,
33
(
4
), pp.
1133
1148
.
35.
United States. Army
,
1969
, “Structures to Resist the Effects of Accidental Explosions,”
U.S. Government Printing Office
,
Washington, DC
, Standard No. TM 5-1300.
36.
Koseki
,
H.
,
1989
, “
Combustion Properties of Large Liquid Pool Fires
,”
Fire Technol.
,
25
(
3
), pp.
241
255
.
37.
Persson
,
H.
,
1990
, “
Fundamental Equipment for Foam Firefighting–Experimental Results and Recommendations as a Basis for Design and Performance
,” SP Technical Research Institute of Sweden, Sweden.
You do not currently have access to this content.