Uncertainties cannot be ignored in the design process of complex multidisciplinary systems. Robust multidisciplinary design optimization methods (RMDOs) can treat uncertainties as specified probabilistic distributions when enough statistical information is available while they assign intervals for nondeterministic variables since designers may not have enough information to obtain statistical distributions, especially in the early stage of design optimization processes. Both types of uncertainties are very likely to appear simultaneously. In order to obtain solutions to RMDO problems under mixed interval and probabilistic uncertainties, this work proposed a new sequential RMDO approach, mixed SR-MDO. First, the robust optimization (RO) problem in a single discipline under mixed uncertainties is formulated and solved. Then, following the SR-MDO framework from the previous work, MDO problems under mixed uncertainties are solved by handling probabilistic and interval uncertainties sequentially in decomposed subsystem problems. Interval uncertainties are handled by using the worst-case sensitivity analysis, and the influence of probabilistic uncertainties in objectives, constraints, as well as in discipline analysis models is characterized by corresponding mean and variance. The applied SR-MDO framework allows subsystems in its full autonomy RO and sequential RO stages to run independently in parallel. This makes mixed SR-MDO be efficient for independent disciplines to work simultaneously and be more time-saving. Computational complexity of the proposed approach mainly relates to the double-loop optimization process in the worst-case interval uncertainties analysis. Examples are presented to demonstrate the applicability and efficiency of the mixed SR-MDO approach.

References

References
1.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.
2.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
3.
Göhler
,
S. M.
,
Eifler
,
T.
, and
Howard
,
T. J.
,
2016
, “
Robustness Metrics: Consolidating the Multiple Approaches to Quantify Robustness
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111407
.
4.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2006
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
5.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
6.
Jung
,
D. H.
, and
Lee
,
B. C.
,
2002
, “
Development of a Simple and Efficient Method for Robust Optimization
,”
Int. J. Numer. Methods Eng.
,
53
(
9
), pp.
2201
2215
.
7.
Zhou
,
Q.
,
Wang
,
Y.
,
Choi
,
S.-K.
,
Jiang
,
P.
,
Shao
,
X.
,
Hu
,
J.
, and
Shu
,
L.
,
2018
, “
A Robust Optimization Approach Based on Multi-Fidelity Metamodel
,”
Struct. Multidiscip. Optim.
,
57
(
2
), pp.
775
797
.
8.
Cramer
,
E. J.
,
Dennis
,
J.
,
John
,
E.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
.
9.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
10.
Park
,
G.-J.
,
2007
,
Analytic Methods for Design Practice
,
Springer Science & Business Media
, Berlin.
11.
Sobieszczanski-Sobieski
,
J.
,
Morris
,
A.
, and
van Tooren
,
M.
,
2015
,
Multidisciplinary Design Optimization Supported by Knowledge Based Engineering
,
Wiley
, New York.
12.
Sobieszczanski-Sobieski
,
J.
,
1988
, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,”
Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization
, Hampton, VA, Sept. 28–30, Paper No. NASA-TM-101494.
13.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J. S.
, and
Sandusky
,
R. R.
,
2000
, “
Bilevel Integrated System Synthesis
,”
AIAA J.
,
38
(
1
), pp.
164
172
.
14.
Yi
,
S.-I.
,
Shin
,
J.-K.
, and
Park
,
G.
,
2008
, “
Comparison of MDO Methods With Mathematical Examples
,”
Struct. Multidiscip. Optim.
,
35
(
5
), pp.
391
402
.
15.
Sobieszczanski-Sobieski
,
J.
,
Altus
,
T. D.
,
Phillips
,
M.
, and
Sandusky
,
R.
,
2003
, “
Bilevel Integrated System Synthesis for Concurrent and Distributed Processing
,”
AIAA J.
,
41
(
10
), pp.
1996
2003
.
16.
Braun
,
R. D.
,
1996
, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. thesis, Stanford University, Stanford, CA.
17.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.
18.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Adaptive Surrogate Modeling for Time-Dependent Multidisciplinary Reliability Analysis
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021401
.
19.
Li
,
M.
, and
Azarm
,
S.
,
2008
, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081402
.
20.
Hu
,
W.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2013
, “
New Approximation Assisted Multi-Objective Collaborative Robust Optimization (New AA-McRO) Under Interval Uncertainty
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
19
35
.
21.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2013
, “
Robustness-Based Design Optimization of Multidisciplinary System Under Epistemic Uncertainty
,”
AIAA J.
,
51
(
5
), pp.
1021
1031
.
22.
Brevault
,
L.
,
Balesdent
,
M.
,
Bérend
,
N.
, and
Le Riche
,
R.
,
2015
, “
Decoupled Multidisciplinary Design Optimization Formulation for Interdisciplinary Coupling Satisfaction Under Uncertainty
,”
AIAA J.
,
54
(
1
), pp.
186
205
.
23.
Xia
,
T.
,
Li
,
M.
, and
Zhou
,
J.
,
2016
, “
A Sequential Robust Optimization Approach for Multidisciplinary Design Optimization With Uncertainty
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111406
.
24.
Hosseini
,
M.
,
Nosratollahi
,
M.
, and
Sadati
,
H.
,
2017
, “
Multidisciplinary Design Optimization of UAV Under Uncertainty
,”
J. Aerosp. Technol. Manage.
,
9
(
2
), pp.
169
178
.
25.
Zhou
,
J.
,
Xu
,
M.
, and
Li
,
M.
,
2016
, “
Reliability-Based Design Optimization Concerning Objective Variation Under Mixed Probabilistic and Interval Uncertainties
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114501
.
26.
Wang
,
L.
,
Wang
,
X.
,
Wang
,
R.
, and
Chen
,
X.
,
2016
, “
Reliability-Based Design Optimization Under Mixture of Random, Interval and Convex Uncertainties
,”
Archive Appl. Mech.
,
86
(
7
), pp.
1341
1367
.
27.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2017
, “
Reliability-Based Design Optimization of Multidisciplinary System Under Aleatory and Epistemic Uncertainty
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
681
699
.
28.
Xiong
,
F.
,
Sun
,
G.
,
Xiong
,
Y.
, and
Yang
,
S.
,
2014
, “
A Moment-Matching Robust Collaborative Optimization Method
,”
J. Mech. Sci. Technol.
,
28
(
4
), pp.
1365
1372
.
29.
Wang
,
F.
,
Xiao
,
M.
, and
Gao
,
L.
,
2015
, “
Probabilistic Analytical Target Cascading Combined With Kriging Metamodel for Multidisciplinary Robust Design Optimization
,”
IEEE International Conference on Industrial Engineering and Engineering Management
(
IEEM
), Singapore, Dec. 6–9, pp.
1407
1411
.https://ieeexplore.ieee.org/document/7385879/
30.
Chagraoui
,
H.
,
Soula
,
M.
, and
Guedri
,
M.
,
2017
, “
Robust Multi-Objective Collaborative Optimization of Complex Structures
,”
Advances in Acoustics and Vibration
,
Springer
, Berlin, pp.
247
258
.
31.
Du
,
X. P.
, and
Zhang
,
Y.
,
2010
, “
An Approximation Approach to General Robustness Assessment for Multidisciplinary Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
1
), p.
011003
.
32.
Li
,
F.
,
Sun
,
G.
,
Huang
,
X.
,
Rong
,
J.
, and
Li
,
Q.
,
2015
, “
Multiobjective Robust Optimization for Crashworthiness Design of Foam Filled Thin-Walled Structures With Random and Interval Uncertainties
,”
Eng. Struct.
,
88
, pp.
111
124
.
33.
Siddall
,
J. N.
,
1984
, “
A New Approach to Probability in Engineering Design and Optimization
,”
J. Mech., Trans., Autom. Des.
,
106
(
1
), pp.
5
10
.
34.
Yu
,
J.
, and
Ishii
,
K.
,
1993
, “
A Robust Optimization Method for Systems With Significant Nonlinear Effects
,”
Adv. Des. Autom.
,
65
(
1
), pp.
371
378
.
35.
Yu
,
J.-C.
, and
Ishii
,
K.
,
1998
, “
Design for Robustness Based on Manufacturing Variation Patterns
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
196
202
.
36.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
37.
Gabrel
,
V.
,
Murat
,
C.
, and
Thiele
,
A.
,
2014
, “
Recent Advances in Robust Optimization: An Overview
,”
Eur. J. Oper. Res.
,
235
(
3
), pp.
471
483
.
38.
Das
,
I.
,
2000
, “
Robustness Optimization for Constrained Nonlinear Programming Problems
,”
Eng. Optim.
,
32
(
5
), pp.
585
618
.
39.
Du
,
X.
, and
Chen
,
W.
,
1999
, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.
40.
Doltsinis
,
I.
, and
Kang
,
Z.
,
2004
, “
Robust Design of Structures Using Optimization Methods
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
23–26
), pp.
2221
2237
.
41.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
74
80
.
42.
Li
,
M.
,
Gabriel
,
S. A.
,
Shim
,
Y.
, and
Azarm
,
S.
,
2011
, “
Interval Uncertainty-Based Robust Optimization for Convex and Non-Convex Quadratic Programs With Applications in Network Infrastructure Planning
,”
Networks Spat. Econ.
,
11
(
1
), pp.
159
191
.
43.
Zhou
,
J.
,
Cheng
,
S.
, and
Li
,
M.
,
2012
, “
Sequential Quadratic Programming for Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100913
.
44.
Zhou
,
J.
, and
Li
,
M.
,
2013
, “
Advanced Robust Optimization With Interval Uncertainty Using a Single-Looped Structure and Sequential Quadratic Programming
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021008
.
45.
Cheng
,
S.
, and
Li
,
M.
,
2015
, “
Robust Optimization Using Hybrid Differential Evolution and Sequential Quadratic Programming
,”
Eng. Optim.
,
47
(
1
), pp.
87
106
.
46.
Zhou
,
J.
,
Li
,
M.
, and
Xu
,
M.
,
2016
, “
A Novel Sequential Multi-Objective Optimization Using Anchor Points in the Design Space of Global Variables
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121406
.
47.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2011
, “
Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061002
.
48.
Jianhua Zhou
,
M. L.
, and
Xu
,
M.
,
2015
, “
A New Sequential Multi-Disciplinary Optimization Method for Bi-Level Decomposed Systems
,”
ASME
Paper No. DETC2015-46307.
49.
Kurpati
,
A.
,
Azarm
,
S.
, and
Wu
,
J.
,
2002
, “
Constraint Handling Improvements for Multiobjective Genetic Algorithms
,”
Struct. Multidiscip. Optim.
,
23
(
3
), pp.
204
213
.
You do not currently have access to this content.