Managing potential disruptive events at the operating phase of an engineered system therefore improving the system's failure resilience is an importance yet challenging task in engineering design. The resilience of an engineered system can be improved by enhancing the failure restoration capability of the system with appropriate system control strategies. Therefore, control-guided failure restoration is an essential step in engineering design for resilience. Considering different characteristics of disruptive events and their impacts to the performance of a system, effective control strategies for the failure restoration must be selected correspondingly. However, the challenge is to develop generally applicable guiding principles for selecting effective control strategies, thus implementing the control-guided failure restorations. In this paper, a comparison of three commonly used control strategies for dynamic system control is conducted with the focus on the effectiveness of restoring system performance after the system has undergone different major disruptive events. A case study of an electricity transmission system is used to demonstrate the dynamic system modeling and the comparison of three control strategies for disruption management.

References

References
1.
Zio
,
E.
, and
Sansavini
,
G.
,
2011
, “
Modeling Interdependent Network Systems for Identifying Cascade-Safe Operating Margins
,”
IEEE Trans. Reliab.
,
60
(
1
), pp.
94
101
.
2.
Yodo
,
N.
,
Wang
,
P.
, and
Rafi
,
M.
,
2018
, “
Enabling Resilience of Complex Engineered Systems Using Control Theory
,”
IEEE Trans. Reliab.
,
67
(
1
), pp.
53
65
.
3.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Modeling and Quantification for Engineered Systems Using Bayesian Networks
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031404
.
4.
Hu
,
Z.
, and
Du
,
X.
,
2014
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
.
5.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
874
884
.
6.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Adaptive Probability Analysis Using an Enhanced Hybrid Mean Value (HMV+) Method
,”
J. Struct. Multidiscip. Optim.
,
29
(
2
), pp.
134
148
.
7.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
8.
Youn
,
B.
, and
Wang
,
P.
,
2006
, “
Bayesian Reliability Based Design Optimization Under Both Aleatory and Epistemic Uncertainties
,”
AIAA
Paper No. 2006-6928.
9.
Youn
,
B. D.
, and
Wang
,
P.
,
2008
, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
,
36
(
2
), pp.
107
123
.
10.
Wang
,
P.
,
Youn
,
B. D.
,
Hu
,
C.
,
Ha
,
J. M.
, and
Jeon
,
B.
, 2014, “
A Probabilistic Detectability-Based Sensor Network Design Method for System Health Monitoring and Prognostics
,”
J. Intell. Mater. Syst. Struct.
,
26
(
9
), pp.
1079
1090
.
11.
Bai
,
G.
,
Wang
,
P.
, and
Hu
,
C.
,
2015
, “
A Self-Cognizant Dynamic System Approach for Prognostics and Health Management
,”
J. Power Sources
,
278
, pp.
163
174
.
12.
Hu
,
C.
,
Youn
,
B. D.
, and
Wang
,
P.
, 2010, “
Ensemble of Data-Driven Prognostic Algorithms With Weight Optimization and K-Fold Cross Validation
,”
ASME
Paper No. DETC2010-29182.
13.
Tamilselvan
,
P.
,
Wang
,
Y.
, and
Wang
,
P.
,
2012
, “
Deep Belief Network Based State Classification for Structural Health Diagnosis
,”
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 3–10, pp.
1
11
.
14.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension-Reduction (EDR) Method for Sensitivity-Free Uncertainty Quantification
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
13
28
.
15.
Wang
,
P.
,
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
A Generalized Complementary Intersection Method (GCIM) for System Reliability Analysis
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071003
.
16.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
A New Approach for Reliability Analysis With Time-Variant Performance Characteristics
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
70
81
.
17.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Engineering Resilience Quantification and System Design Implications: A Literature Survey
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111408
.
18.
Woods, D. D.
, 2015, “
Four Concepts for Resilience and the Implications for the Future of Resilience Engineering
,”
Reliab. Eng. Syst. Saf.
,
141
, pp.
5
9
.
19.
Yodo
,
N.
,
Wang
,
P.
, and
Zhou
,
Z.
,
2017
, “
Predictive Resilience Analysis of Complex Systems Using Dynamic Bayesian Networks
,”
IEEE Trans. Reliab.
,
66
(
3
), pp.
761
770
.
20.
Madni
,
A. M.
, and
Jackson
,
S.
, 2009, “
Towards a Conceptual Framework for Resilience Engineering
,”
IEEE Syst. J.
,
3
(
2
), pp.
181
191
.
21.
Henry
,
D.
, and
Ramirez-Marquez
,
J. E.
, 2012, “
Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time
,”
Reliab. Eng. Syst. Saf.
,
99
, pp.
114
122
.
22.
Youn
,
B. D.
,
Hu
,
C.
,
Wang
,
P.
, and
Yoon
,
J.-T.
,
2011
, “
Resilience Allocation for Resilient Engineered System Design
,”
J. Inst. Control, Rob. Syst.
,
17
(
11
), pp.
1082
1089
.
23.
Ayyub
,
B. M.
,
2014
, “
Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making
,”
Risk Anal.
,
34
(
2
), pp.
340
355
.
24.
Chen
,
X.
,
Xi
,
Z.
, and
Jing
,
P.
,
2017
, “
A Unified Framework for Evaluating Supply Chain Reliability and Resilience
,”
IEEE Trans. Reliab.
,
66
(
4
), pp.
1144
1156
.
25.
Youn
,
B. D.
,
Hu
,
C.
, and
Wang
,
P.
, “
Resilience-Driven System Design of Complex Engineered Systems
,”
ASME J. Mech. Des
,
133
(
10
), p.
101011
.
26.
Ouyang
,
M.
,
Dueñas-Osorio
,
L.
, and
Min
,
X.
,
2012
, “
A Three-Stage Resilience Analysis Framework for Urban Infrastructure Systems
,”
Struct. Saf.
,
36–37
, pp.
23
31
.
27.
Saurin
,
T. A.
, and
Carim Júnior
,
G. C.
,
2011
, “
Evaluation and Improvement of a Method for Assessing HSMS From the Resilience Engineering Perspective: A Case Study of an Electricity Distributor
,”
Saf. Sci.
,
49
(
2
), pp.
355
368
.
28.
Farid
,
A. M.
,
2017
, “
Static Resilience of Large Flexible Engineering Systems: Axiomatic Design Model and Measures
,”
IEEE Syst. J.
,
11
(
4
), pp.
2006
2017
.
29.
Ouyang
,
M.
, and
Dueñas-Osorio
,
L.
,
2014
, “
Multi-Dimensional Hurricane Resilience Assessment of Electric Power Systems
,”
Struct. Saf.
,
48
, pp.
15
24
.
30.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Allocation for Early Stage Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
9
), pp.
091402
091410
.
31.
Nemeth
,
C.
,
Wears
,
R.
,
Woods
,
D.
,
Hollnagel
,
E.
, and
Cook
,
R.
,
2008
, “
Minding the Gaps: Creating Resilience in Health Care
,”
Advances in Patient Safety: New Directions and Alternative Approaches
(Performance and Tools, Vol. 3),
National Center for Biological Information
,
Bethesda, MD
.
32.
Cimellaro
,
G. P.
,
Fumo
,
C.
,
Reinhorn
,
A. M.
, and
Bruneau
,
M.
,
2008
, “
Seismic Resilience of Health Care Facilities
,”
14th World Conference on Earthquake Engineering
(
14WCEE
), Beijing, China, Oct. 12–17, Paper No. S21-001.http://www.iitk.ac.in/nicee/wcee/article/14_S21-001.PDF
33.
Patterson
,
M. D.
, and
Wears
,
R. L.
,
2015
, “
Resilience and Precarious Success
,”
Reliab. Eng. Syst. Saf.
,
141
, pp.
45
53
.
34.
Cimellaro
,
G. P.
,
Reinhorn
,
A. M.
, and
Bruneau
,
M.
,
2010
, “
Seismic Resilience of a Hospital System
,”
Struct. Infrastruct. Eng.
,
6
(
1–2
), pp.
127
144
.
35.
Gopalakrishnan
,
K.
, and
Peeta
,
S.
,
2010
,
Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering
,
Springer
,
Berlin
, pp.
84
91
.
36.
Hudson
,
S.
,
Cormie
,
D.
,
Tufton
,
E.
, and
Inglis
,
S.
,
2012
, “
Engineering Resilient Infrastructure
,”
Proc. Inst. Civ. Eng. Civ. Eng.
,
165
(
6
), pp.
5
12
.
37.
Reed
,
D. A.
,
Kapur
,
K. C.
, and
Christie
,
R. D.
,
2009
, “
Methodology for Assessing the Resilience of Networked Infrastructure
,”
IEEE Syst. J.
,
3
(
2
), pp.
174
180
.
38.
Omer
,
M.
,
Nilchiani
,
R.
, and
Mostashari
,
A.
,
2009
, “
Measuring the Resilience of the Trans-Oceanic Telecommunication Cable System
,”
IEEE Syst. J.
,
3
(
3
), pp.
295
303
.
39.
Compare
,
M.
, and
Zio
,
E.
,
2014
, “
Predictive Maintenance by Risk Sensitive Particle Filtering
,”
IEEE Trans. Reliab.
,
63
(
1
), pp.
134
143
.
40.
Rafi
,
M.
, and
Steck
,
J. E.
,
2013
, “
Response and Recovery of an MRAC Advanced Flight Control System to Wake Vortex Encounters
,”
AIAA
Paper No. 2013-5209.
41.
Rafi
,
M.
,
Steck
,
J. E.
, and
Watkins
,
J. M.
,
2016
, “
Application of a Kalman Filter for Reduction of Sensor/Turbulence-Induced Noise Within a Model Reference Adaptive Controller
,”
AIAA
Paper No. 2016-1625.
42.
Rafi
,
M.
,
Steck
,
J.
, and
Rokhsaz
,
K.
,
2012
, “
A Microburst Response and Recovery Scheme Using Advanced Flight Envelope Protection
,”
AIAA
Paper No. 2012-4444.
43.
Nobleheart
,
W.
,
Chakravarthy
,
A.
, and
Nguyen
,
N. T.
,
2014
, “
Optimal and Decentralized Controller Designs for an Elastically Shaped Aircraft
,”
AIAA
Paper No. 2014-1042.
44.
Bitoleanu
,
A.
,
Popescu
,
M.
, and
Suru
,
V.
,
2016
, “
Optimal Controllers Design in Indirect Current Control System of Active DC-Traction Substation
,”
IEEE International Power Electronics and Motion Control Conference
(
PEMC
), Varna, Bulgaria, Sept. 25–28, pp.
912
917
.
45.
Hafez
,
B.
,
Enjeti
,
P.
, and
Ahmed
,
S.
,
2016
, “
A Robust Controller for Medium Voltage AC Collection Grid for Large Scale Photovoltaic Plants Based on Medium Frequency Transformers
,”
IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Long Beach, CA, Mar. 20–24, pp.
936
942
.
46.
Xu
,
J.
,
Shi
,
P.
,
Lim
,
C. C.
,
Cai
,
C.
, and
Zou
,
Y.
,
2016
, “
Integrated Structural Parameter and Robust Controller Design for Attitude Tracking Maneuvers
,”
IEEE/ASME Trans. Mechatronics
,
21
(
5
), pp.
2490
2498
.
47.
Zhu
,
B.
, and
Zuo
,
Z.
,
2017
, “
Adaptive Model Predictive Control for Set-Point Tracking of a Single-DOF Flapping-Wing Unmanned Aerial Vehicle
,”
IEEE International Conference on Control and Automation
(
ICCA
), Ohrid, Macedonia, July 3–6, pp.
861
866
.
48.
Liu
,
X.
,
Ferrario
,
E.
, and
Zio
,
E.
,
2017
, “
Resilience Analysis Framework for Interconnected Critical Infrastructures
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
2
), p. 021001.
49.
Kozak
,
S.
,
2016
, “
From PID to MPC: Control Engineering Methods Development and Applications
,”
Cybernetics & Informatics
(
K&I
), Levoca, Slovakia, Feb. 2–6, pp.
1
7
.
50.
Yun
,
L.
,
Kiam Heong
,
A.
, and
Chong
,
G. C. Y.
,
2006
, “
PID Control System Analysis and Design
,”
IEEE Control Syst.
,
26
(
1
), pp.
32
41
.
51.
Xia
,
Y.
,
Li
,
L.
,
Liu
,
G.-P.
, and
Shi
,
P.
,
2011
, “
H∞ Predictive Control of Networked Control Systems
,”
Int. J. Control
,
84
(
6
), pp.
1080
1097
.
52.
Xia
,
Y.
,
Yang
,
H.
,
Shi
,
P.
, and
Fu
,
M.
,
2010
, “
Constrained Infinite-Horizon Model Predictive Control for Fuzzy-Discrete-Time Systems
,”
IEEE Trans. Fuzzy Syst.
,
18
(
2
), pp.
429
436
.
53.
Xia
,
Y.
,
Chen
,
J.
,
Liu
,
G. P.
,
Shi
,
P.
, and
Rees
,
D.
,
2008
, “
Robust Constrained Model Predictive Control Based on Parameter-Dependent Lyapunov Functions
,”
Circuits, Syst. Signal Process.
,
27
(
4
), pp.
429
446
.
54.
Li
,
P.
,
Liu
,
R.
, and
Ma
,
X.
,
2017
, “
Adaptive Indirect Model Predictive Control Schemes for Boost Converters
,” 36th Chinese Control Conference (
CCC
), Dalian, China, July 26–28, pp.
9203
9207
.
55.
Chikasha
,
P. N.
, and
Dube
,
C.
,
2017
, “
Adaptive Model Predictive Control of a Quadrotor
,”
IFAC-Papers Online
,
50
(
2
), pp.
157
162
.
You do not currently have access to this content.