Optimal sizing of peak loads has proven to be an important factor affecting the overall energy consumption of heating ventilation and air-conditioning (HVAC) systems. Uncertainty quantification of peak loads enables optimal configuration of the system by opting for a suitable size factor. However, the representation of uncertainty in HVAC sizing has been limited to probabilistic analysis and scenario-based cases, which may limit and bias the results. This study provides a framework for uncertainty representation in building energy modeling, due to both random factors and imprecise knowledge. The framework is shown by a numerical case study of sizing cooling loads, in which uncertain climatic data are represented by probability distributions and human-driven activities are described by possibility distributions. Cooling loads obtained from the hybrid probabilistic–possibilistic propagation of uncertainty are compared to those obtained by pure probabilistic and pure possibilistic approaches. Results indicate that a pure possibilistic representation may not provide detailed information on the peak cooling loads, whereas a pure probabilistic approach may underestimate the effect of uncertain human behavior. The proposed hybrid representation and propagation of uncertainty in this paper can overcome these issues by proper handling of both random and limited data.

References

References
1.
Birol
,
F.
,
2010
, “
World Energy Outlook 2010
,” Vol.
1
, International Energy Agency, Paris, France,
Report
.
2.
Guillén-Lambea
,
S.
,
Rodríguez-Soria
,
B.
, and
Marín
,
J. M.
,
2016
, “
Review of European Ventilation Strategies to Meet the Cooling and Heating Demands of Nearly Zero Energy Buildings (nZEB)/Passivhaus. Comparison With the USA
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
561
574
.
3.
Allouhi
,
A.
,
El Fouih
,
Y.
,
Kousksou
,
T.
,
Jamil
,
A.
,
Zeraouli
,
Y.
, and
Mourad
,
Y.
,
2015
, “
Energy Consumption and Efficiency in Buildings: Current Status and Future Trends
,”
J. Cleaner Prod.
,
109
, pp.
118
130
.
4.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
.
5.
Zhao
,
P.
,
Henze
,
G. P.
,
Plamp
,
S.
, and
Cushing
,
V. J.
,
2013
, “
Evaluation of Commercial Building HVAC Systems as Frequency Regulation Providers
,”
Energy Build.
,
67
, pp.
225
235
.
6.
Vakiloroaya
,
V.
,
Samali
,
B.
,
Fakhar
,
A.
, and
Pishghadam
,
K.
,
2014
, “
A Review of Different Strategies for HVAC Energy Saving
,”
Energy Convers. Manage.
,
77
, pp.
738
754
.
7.
Wan Mohd Nazi
,
W. I.
,
Royapoor
,
M.
,
Wang
,
Y.
, and
Roskilly
,
A. P.
,
2017
, “
Office Building Cooling Load Reduction Using Thermal Analysis Method—A Case Study
,”
Appl. Energy
,
185
(
Pt. 2
), pp.
1574
1584
.
8.
Salari
,
E.
, and
Askarzadeh
,
A.
,
2015
, “
A New Solution for Loading Optimization of Multi-Chiller Systems by General Algebraic Modeling System
,”
Appl. Therm. Eng.
,
84
, pp.
429
436
.
9.
Mitchell
,
J. W.
, and
Braun
,
J. E.
,
2013
,
Principles of Heating, Ventilation, and Air Conditioning in Buildings
,
Wiley
,
Hoboken, NJ
.
10.
Schuetter
,
S.
,
DeBaillie
,
L.
, and
Ahl
,
D.
,
2014
, “
Future Climate Impacts on Building Design
,”
ASHRAE J.
,
56
(
9
), pp.
36
44
.
11.
Djunaedy
,
E.
,
Van den Wymelenberg
,
K.
,
Acker
,
B.
, and
Thimmana
,
H.
,
2011
, “
Oversizing of HVAC System: Signatures and Penalties
,”
Energy Build.
,
43
(
2–3
), pp.
468
475
.
12.
Yik
,
F.
,
Lee
,
W.
,
Burnett
,
J.
, and
Jones
,
P.
,
1999
, “
Chiller Plant Sizing by Cooling Load Simulation as a Means to Avoid Oversized Plant
,”
HKIE Trans.
,
6
(
2
), pp.
19
25
.
13.
Sun
,
Y.
,
Huang
,
P.
, and
Huang
,
G.
,
2015
, “
A Multi-Criteria System Design Optimization for Net Zero Energy Buildings Under Uncertainties
,”
Energy Build.
,
97
, pp.
196
204
.
14.
Cheng
,
Q.
,
Wang
,
S.
, and
Yan
,
C.
,
2016
, “
Robust Optimal Design of Chilled Water Systems in Buildings With Quantified Uncertainty and Reliability for Minimized Life-Cycle Cost
,”
Energy Build.
,
126
, pp.
159
169
.
15.
Shen
,
L.
, and
Sun
,
Y.
,
2016
, “
Performance Comparisons of Two System Sizing Approaches for Net Zero Energy Building Clusters Under Uncertainties
,”
Energy Build.
,
127
, pp.
10
21
.
16.
Gang
,
W.
,
Wang
,
S.
,
Xiao
,
F.
, and
Gao
,
D-C.
,
2015
, “
Robust Optimal Design of Building Cooling Systems Considering Cooling Load Uncertainty and Equipment Reliability
,”
Appl. Energy
,
159
, pp.
265
275
.
17.
Burhenne
,
S.
,
Tsvetkova
,
O.
,
Jacob
,
D.
,
Henze
,
G. P.
, and
Wagner
,
A.
,
2013
, “
Uncertainty Quantification for Combined Building Performance and Cost-Benefit Analyses
,”
Build. Environ.
,
62
, pp.
143
154
.
18.
Yıldız
,
Y.
, and
Arsan
,
Z. D.
,
2011
, “
Identification of the Building Parameters That Influence Heating and Cooling Energy Loads for Apartment Buildings in Hot-Humid Climates
,”
Energy
,
36
(
7
), pp.
4287
4296
.
19.
Li
,
H.
, and
Wang
,
S.
,
2017
, “
Probabilistic Optimal Design Concerning Uncertainties and On-Site Adaptive Commissioning of Air-Conditioning Water Pump Systems in Buildings
,”
Appl. Energy
,
202
, pp.
53
65
.
20.
Lee
,
K. H.
, and
Schiavon
,
S.
,
2014
, “
Influence of Three Dynamic Predictive Clothing Insulation Models on Building Energy Use, HVAC Sizing and Thermal Comfort
,”
Energies
,
7
(
4
), pp.
1917
1934
.
21.
Cheng
,
Q.
,
Wang
,
S.
,
Yan
,
C.
, and
Xiao
,
F.
,
2017
, “
Probabilistic Approach for Uncertainty-Based Optimal Design of Chiller Plants in Buildings
,”
Appl. Energy
,
185
(
Pt. 2
), pp.
1613
1624
.
22.
Mui
,
K.
, and
Wong
,
L.
,
2007
, “
Cooling Load Calculations in Subtropical Climate
,”
Build. Environ.
,
42
(
7
), pp.
2498
2504
.
23.
Rasouli
,
M.
,
Ge
,
G.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2013
, “
Uncertainties in Energy and Economic Performance of HVAC Systems and Energy Recovery Ventilators Due to Uncertainties in Building and HVAC Parameters
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
732
742
.
24.
Gang
,
W.
,
Wang
,
S.
,
Shan
,
K.
, and
Gao
,
D.
,
2015
, “
Impacts of Cooling Load Calculation Uncertainties on the Design Optimization of Building Cooling Systems
,”
Energy Build.
,
94
, pp.
1
9
.
25.
Domínguez-Muñoz
,
F.
,
Cejudo-López
,
J. M.
, and
Carrillo-Andrés
,
A.
,
2010
, “
Uncertainty in Peak Cooling Load Calculations
,”
Energy Build.
,
42
(
7
), pp.
1010
1018
.
26.
Sun
,
Y.
,
Gu
,
L.
,
Wu
,
C. J.
, and
Augenbroe
,
G.
,
2014
, “
Exploring HVAC System Sizing Under Uncertainty
,”
Energy Build.
,
81
, pp.
243
252
.
27.
Wang
,
Q.
,
Augenbroe
,
G.
,
Kim
,
J.-H.
, and
Gu
,
L.
,
2016
, “
Meta-Modeling of Occupancy Variables and Analysis of Their Impact on Energy Outcomes of Office Buildings
,”
Appl. Energy
,
174
, pp.
166
180
.
28.
Corotis
,
R. B.
,
2015
, “
An Overview of Uncertainty Concepts Related to Mechanical and Civil Engineering
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
1
(
4
), p.
040801
.
29.
Page
,
J.
,
Robinson
,
D.
,
Morel
,
N.
, and
Scartezzini
,
J.-L.
,
2008
, “
A Generalised Stochastic Model for the Simulation of Occupant Presence
,”
Energy Build.
,
40
(
2
), pp.
83
98
.
30.
Richardson
,
I.
,
Thomson
,
M.
, and
Infield
,
D.
,
2008
, “
A High-Resolution Domestic Building Occupancy Model for Energy Demand Simulations
,”
Energy Build.
,
40
(
8
), pp.
1560
1566
.
31.
Wang
,
C.
,
Yan
,
D.
, and
Jiang
,
Y.
, 2011, “
A Novel Approach for Building Occupancy Simulation
,”
Build. Simul.
,
4
(
2
), pp.
149
167
.
32.
Tahmasebi
,
F.
, and
Mahdavi
,
A.
,
2015
, “
The Sensitivity of Building Performance Simulation Results to the Choice of Occupants' Presence Models: A Case Study
,”
J. Build. Perform. Simul.
,
10
(
5–6
), pp.
625
635
.
33.
D'Oca
,
S.
, and
Hong
,
T.
,
2015
, “
Occupancy Schedules Learning Process Through a Data Mining Framework
,”
Energy Build.
,
88
, pp.
395
408
.
34.
Miller
,
C.
,
Nagy
,
Z.
, and
Schlueter
,
A.
,
2015
, “
Automated Daily Pattern Filtering of Measured Building Performance Data
,”
Autom. Constr.
,
49
(Pt. A), pp.
1
17
.
35.
Eisenhower
,
B.
,
O'Neill
,
Z.
,
Fonoberov
,
V. A.
, and
Mezić
,
I.
,
2012
, “
Uncertainty and Sensitivity Decomposition of Building Energy Models
,”
J. Build. Perform. Simul.
,
5
(
3
), pp.
171
184
.
36.
Azar
,
E.
, and
Amoodi
,
A. A.
,
2016
, “
Quantifying the Impact of Uncertainty in Human Actions on the Energy Performance of Educational Buildings
,”
Winter Simulation Conference
, (
WSC
), Washington, DC, Dec. 11–14, pp.
1736
1744
.
37.
Kim
,
Y.-J.
,
2016
, “
Comparative Study of Surrogate Models for Uncertainty Quantification of Building Energy Model: Gaussian Process Emulator Vs. Polynomial Chaos Expansion
,”
Energy Build.
,
133
, pp.
46
58
.
38.
Gaetani
,
I.
,
Hoes
,
P.-J.
, and
Hensen
,
J. L.
,
2016
, “
Occupant Behavior in Building Energy Simulation: Towards a Fit-for-Purpose Modeling Strategy
,”
Energy Build.
,
121
, pp.
188
204
.
39.
Dubois
,
D.
, and
Prade
,
H.
,
2009
, “
Formal Representations of Uncertainty
,”
Decision-Making Process: Concepts and Methods
, D. Bouyssou, D. Dubios, M. Pirlot, and H. Parade, eds., Wiley, London, pp.
85
156
.
40.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
,
2002
, “
Error and Uncertainty in Modeling and Simulation
,”
Reliab. Eng. Syst. Saf.
,
75
(
3
), pp.
333
357
.
41.
Klir
,
G. J.
,
1994
, “
On the Alleged Superiority of Probabilistic Representation of Uncertainty
,”
IEEE Trans. Fuzzy Syst.
,
2
(
1
), pp.
27
31
.
42.
Tian
,
W.
,
2013
, “
A Review of Sensitivity Analysis Methods in Building Energy Analysis
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
411
419
.
43.
D'Oca
,
S.
,
Hong
,
T.
, and
Langevin
,
J.
,
2018
, “
The Human Dimensions of Energy Use in Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
81
(Pt. 1), pp.
731
742
.
44.
Parsons
,
S.
,
1996
, “
Current Approaches to Handling Imperfect Information in Data and Knowledge Bases
,”
IEEE Trans. Knowl. Data Eng.
,
8
(
3
), pp.
353
372
.
45.
Guyonnet
,
D.
,
Bourgine
,
B.
,
Dubois
,
D.
,
Fargier
,
H.
,
Côme
,
B.
, and
Chilès
,
J.-P.
,
2003
, “
Hybrid Approach for Addressing Uncertainty in Risk Assessments
,”
J. Environ. Eng.
,
129
(
1
), pp.
68
78
.
46.
Zio
,
E.
,
2013
,
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
,
Springer
,
London
.
47.
Lindley
,
D. V.
,
1987
, “
The Probability Approach to the Treatment of Uncertainty in Artificial Intelligence and Expert Systems
,”
Statist. Sci.
,
2
(
1
), pp.
17
24
.
48.
Zadeh
,
L. A.
,
2008
, “
Is There a Need for Fuzzy Logic?
,”
Inf. Sci.
,
178
(
13
), pp.
2751
2779
.
49.
Dubois
,
D.
, and
Prade
,
H.
,
2001
, “
Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification
,”
Ann. Math. Artif. Intell.
,
32
(
1
), pp.
35
66
.
50.
Cobb
,
B. R.
, and
Shenoy
,
P. P.
,
2003
, “
A Comparison of Bayesian and Belief Function Reasoning
,”
Inf. Syst. Front.
,
5
(
4
), pp.
345
358
.
51.
Haenni
,
R.
, and
Lehmann
,
N.
,
2003
, “
Implementing Belief Function Computations
,”
Int. J. Intell. Syst.
,
18
(
1
), pp.
31
49
.
52.
Dubois
,
D.
,
Prade
,
H.
, and
Smets
,
P.
,
1996
, “
Representing Partial Ignorance
,”
IEEE Trans. Syst. Man Cybern., Part A
,
26
(
3
), pp.
361
377
.
53.
Kohlas
,
J.
, and
Monney
,
P.-A.
,
2013
,
A Mathematical Theory of Hints: An Approach to the Dempster-Shafer Theory of Evidence
,
Springer Science & Business Media
,
Berlin
.
54.
Chen
,
N.
,
Yu
,
D.
,
Xia
,
B.
, and
Beer
,
M.
,
2016
, “
Uncertainty Analysis of a Structural–Acoustic Problem Using Imprecise Probabilities Based on p-Box Representations
,”
Mech. Syst. Signal Process.
,
80
, pp.
45
57
.
55.
Zhang
,
H.
,
Ha
,
L.
,
Li
,
Q.
, and
Beer
,
M.
,
2017
, “
Imprecise Probability Analysis of Steel Structures Subject to Atmospheric Corrosion
,”
Struct. Saf.
,
67
, pp.
62
69
.
56.
Rocchetta
,
R.
, and
Patelli
,
E.
,
2016
, “
Imprecise Probabilistic Framework for Power Grids Risk Assessment and Sensitivity Analysis
,”
Risk, Reliability and Safety: Innovating Theory and Practice
,
CRC Press
,
London
, pp.
2789
2796
.
57.
Hopfe
,
C. J.
, and
Hensen
,
J. L.
,
2011
, “
Uncertainty Analysis in Building Performance Simulation for Design Support
,”
Energy Build.
,
43
(
10
), pp.
2798
2805
.
58.
Heo
,
Y.
,
Choudhary
,
R.
, and
Augenbroe
,
G.
,
2012
, “
Calibration of Building Energy Models for Retrofit Analysis Under Uncertainty
,”
Energy Build.
,
47
, pp.
550
560
.
59.
Cooper
,
J. A.
,
Ferson
,
S.
, and
Ginzburg
,
L.
,
1996
, “
Hybrid Processing of Stochastic and Subjective Uncertainty Data
,”
Risk Anal.
,
16
(
6
), pp.
785
791
.
60.
Baudrit
,
C.
,
Dubois
,
D.
, and
Perrot
,
N.
,
2008
, “
Representing Parametric Probabilistic Models Tainted With Imprecision
,”
Fuzzy Sets Syst.
,
159
(
15
), pp.
1913
1928
.
61.
Zadeh
,
L. A.
,
1999
, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
100
(Suppl. 1), pp.
9
34
.
62.
Dubois
,
D.
,
Kerre
,
E.
,
Mesiar
,
R.
, and
Prade
,
H.
,
2000
, “
Fuzzy Interval Analysis
,”
Fundamentals of Fuzzy Sets
,
Springer
,
New York
, pp.
483
581
.
63.
Dubois
,
D.
, and
Prade
,
H.
,
1992
, “
When Upper Probabilities are Possibility Measures
,”
Fuzzy Sets Syst.
,
49
(
1
), pp.
65
74
.
64.
Baraldi
,
P.
, and
Zio
,
E.
,
2008
, “
A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis
,”
Risk Anal.
,
28
(
5
), pp.
1309
1326
.
65.
de Wilde
,
P.
, and
Tian
,
W.
,
2009
, “
Identification of Key Factors for Uncertainty in the Prediction of the Thermal Performance of an Office Building Under Climate Change
,”
Build. Simul.
,
2
(
3
), pp.
157
174
.
66.
Dubois
,
D.
,
Fargier
,
H.
, and
Fortin
,
J.
,
2005
, “
The Empirical Variance of a Set of Fuzzy Intervals
,”
14th IEEE International Conference on Fuzzy Systems
(
FUZZ'05
), Reno, NV, May 22–25, pp.
885
890
.
67.
Baudrit
,
C.
,
Dubois
,
D.
, and
Guyonnet
,
D.
,
2006
, “
Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment
,”
IEEE Trans. Fuzzy Syst.
,
14
(
5
), pp.
593
608
.
68.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
69.
Mauris
,
G.
,
Berrah
,
L.
,
Foulloy
,
L.
, and
Haurat
,
A.
,
2000
, “
Fuzzy Handling of Measurement Errors in Instrumentation
,”
IEEE Trans. Instrum. Meas.
,
49
(
1
), pp.
89
93
.
70.
Masson
,
M.-H.
, and
Denœux
,
T.
,
2006
, “
Inferring a Possibility Distribution From Empirical Data
,”
Fuzzy Sets Syst.
,
157
(
3
), pp.
319
340
.
71.
ASHRAE
,
2009
, 2009 ASHRAE® Handbook: Fundamentals,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc
.,
Atlanta, GA
.
72.
Li
,
Y.
, and
Zio
,
E.
,
2012
, “
Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System
,”
Renewable Energy
,
41
, pp.
235
244
.
73.
Sansavini
,
G.
,
Piccinelli
,
R.
,
Golea
,
L.
, and
Zio
,
E.
,
2014
, “
A Stochastic Framework for Uncertainty Analysis in Electric Power Transmission Systems With Wind Generation
,”
Renewable Energy
,
64
, pp.
71
81
.
74.
Rocchetta
,
R.
,
Li
,
Y.
, and
Zio
,
E.
,
2015
, “
Risk Assessment and Risk-Cost Optimization of Distributed Power Generation Systems Considering Extreme Weather Conditions
,”
Reliab. Eng. Syst. Saf.
,
136
, pp.
47
61
.
75.
Naseri
,
M.
,
Baraldi
,
P.
,
Compare
,
M.
, and
Zio
,
E.
,
2016
, “
Availability Assessment of Oil and Gas Processing Plants Operating Under Dynamic Arctic Weather Conditions
,”
Reliab. Eng. Syst. Saf.
,
152
, pp.
66
82
.
76.
Tindale
,
A.
,
2005
, “
DesignBuilder Software
,”
Design-Builder Software Ltd
.,
Gloucestershire, UK
.
77.
Trčka
,
M.
, and
Hensen
,
J. L.
,
2010
, “
Overview of HVAC System Simulation
,”
Autom. Constr.
,
19
(
2
), pp.
93
99
.
78.
Crawley
,
D. B.
,
Lawrie
,
L. K.
,
Winkelmann
,
F. C.
,
Buhl
,
W. F.
,
Huang
,
Y. J.
,
Pedersen
,
C. O.
,
Strand
,
R. K.
,
Liesen
,
R. J.
,
Fisher
,
D. E.
, and
Witte
,
M. J.
,
2001
, “
EnergyPlus: Creating a New-Generation Building Energy Simulation Program
,”
Energy Build.
,
33
(
4
), pp.
319
331
.
79.
Zhang
,
Y.
,
2009
, “
‘Parallel’ EnergyPlus and the Development of a Parametric Analysis Tool
,”
11th Conference of International Building Performance Association
(
IBPSA
), Glasgow, UK, July 27–30, pp.
1382
1388
.
80.
Zhang
,
Y.
, and
Korolija
,
I.
,
2010
, “
Performing Complex Parametric Simulations With jEPlus
,”
Ninth International Conference on Sustainable Energy Technologies
(
SET
), Shanghai, China, Aug. 24–27.
81.
Zhang
,
Y.
,
2012
, “
Use jEPlus as an Efficient Building Design Optimisation Tool
,”
CIBSE ASHRAE Technical Symposium
, London, Apr. 18–19, pp.
18
19
.
82.
Das
,
P.
,
Shrubsole
,
C.
,
Jones
,
B.
,
Hamilton
,
I.
,
Chalabi
,
Z.
,
Davies
,
M.
,
Mavrogianni
,
A.
, and
Taylor
,
J.
,
2014
, “
Using Probabilistic Sampling-Based Sensitivity Analyses for Indoor Air Quality Modelling
,”
Build. Environ.
,
78
, pp.
171
182
.
83.
Zahiri
,
B.
,
Tavakkoli-Moghaddam
,
R.
, and
Pishvaee
,
M. S.
,
2014
, “
A Robust Possibilistic Programming Approach to Multi-Period Location–Allocation of Organ Transplant Centers Under Uncertainty
,”
Comput. Ind. Eng.
,
74
, pp.
139
148
.
84.
Singh
,
M.
, and
Markeset
,
T.
,
2014
, “
Hybrid Models for Handling Variability and Uncertainty in Probabilistic and Possibilistic Failure Analysis of Corroded Pipes
,”
Eng. Failure Anal.
,
42
, pp.
197
209
.
85.
Thevenard
,
D.
,
2010
, “
Influence of Long-Term Trends and Period of Record Selection on the Calculation of Climatic Design Conditions and Degree Days
,”
ASHRAE Trans.
,
116
(
1
), pp.
447
460
.
86.
Kandya
,
A.
, and
Mohan
,
M.
,
2018
, “
Mitigating the Urban Heat Island Effect Through Building Envelope Modifications
,”
Energy Build.
,
164
, pp.
266
277
.
87.
Paolini
,
R.
,
Zani
,
A.
,
MeshkinKiya
,
M.
,
Castaldo
,
V. L.
,
Pisello
,
A. L.
,
Antretter
,
F.
,
Poli
,
T.
, and
Cotana
,
F.
,
2017
, “
The Hygrothermal Performance of Residential Buildings at Urban and Rural Sites: Sensible and Latent Energy Loads and Indoor Environmental Conditions
,”
Energy Build.
,
152
(
Suppl. C
), pp.
792
803
.
88.
Lombardia
,
A.
,
2006
,
Rapporto sullo stato dell'ambiente in Lombardia
,
Regione Lombardia
,
Milan, Italy
.
89.
Thevenard
,
D.
, and
Cornick
,
S.
,
2013
, “
Revising ASHRAE Climatic Data for Design and Standards—Part 1: Overview and Data
,”
ASHRAE Trans.
,
119
(
2
), pp.
181
193
.
90.
Duarte
,
C.
,
Van Den Wymelenberg
,
K.
, and
Rieger
,
C.
,
2013
, “
Revealing Occupancy Patterns in an Office Building Through the Use of Occupancy Sensor Data
,”
Energy Build.
,
67
, pp.
587
595
.
91.
Huang
,
Y. J.
,
2014
, “
An Evaluation of ASHRAE's Climatic Design Conditions Against Actual Long-Term Recorded Weather Data
,”
ASHRAE Trans.
,
120
, pp.
V1
V8
.
92.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
93.
Ruparathna
,
R.
,
Hewage
,
K.
, and
Sadiq
,
R.
,
2017
, “
Economic Evaluation of Building Energy Retrofits: A Fuzzy Based Approach
,”
Energy Build.
,
139
, pp.
395
406
.
94.
Sunitha
,
K.
, and
Behera
,
S.
,
2016
, “
Comparison of Conventional Control Techniques for an Energy Efficient HVAC Systems
,”
Int. J. Appl. Eng. Res.
,
11
(
6
), pp.
4258
4263
.
95.
Keshtkar
,
A.
,
Arzanpour
,
S.
,
Keshtkar
,
F.
, and
Ahmadi
,
P.
,
2015
, “
Smart Residential Load Reduction Via Fuzzy Logic, Wireless Sensors, and Smart Grid Incentives
,”
Energy Build.
,
104
, pp.
165
180
.
96.
Dubois
,
D.
,
Prade
,
H.
, and
Sandri
,
S.
,
1993
, “
On Possibility/Probability Transformations
,”
Fuzzy Logic
,
Springer
, Dordrecht, The Netherlands, pp.
103
112
.
97.
Dubois
,
D.
,
Foulloy
,
L.
,
Mauris
,
G.
, and
Prade
,
H.
,
2004
, “
Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities
,”
Reliable Comput.
,
10
(
4
), pp.
273
297
.
98.
Dubois
,
D.
,
Prade
,
H.
, and
Smets
,
P.
,
2008
, “
A Definition of Subjective Possibility
,”
Int. J. Approximate Reasoning
,
48
(
2
), pp.
352
364
.
99.
Flage
,
R.
,
Baraldi
,
P.
,
Zio
,
E.
, and
Aven
,
T.
,
2013
, “
Probability and Possibility-Based Representations of Uncertainty in Fault Tree Analysis
,”
Risk Anal.
,
33
(
1
), pp.
121
133
.
100.
Mouchaweh
,
M. S.
,
Bouguelid
,
M. S.
,
Billaudel
,
P.
, and
Riera
,
B.
,
2006
, “
Variable Probability-Possibility Transformation
,” 25th European Annual Conference on Human Decision Making and Manual Control (
EAM'06
), Valenciennes, France, Sept. 26–29.
101.
Pedroni
,
N.
,
Zio
,
E.
,
Pasanisi
,
A.
, and
Couplet
,
M.
,
2015
, “
Empirical Comparison of Two Methods for the Bayesian Update of the Parameters of Probability Distributions in a Two-Level Hybrid Probabilistic-Possibilistic Uncertainty Framework for Risk Assessment
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
2
(
1
), p.
04015015
.
You do not currently have access to this content.