Abstract

This paper examines the variability of predicted responses when multiple stress–strain curves (reflecting variability from replicate material tests) are propagated through a finite element model of a ductile steel can being slowly crushed. Over 140 response quantities of interest (QOIs) (including displacements, stresses, strains, and calculated measures of material damage) are tracked in the simulations. Each response quantity's behavior varies according to the particular stress–strain curves used for the materials in the model. We desire to estimate or bound response variation when only a few stress–strain curve samples are available from material testing. Propagation of just a few samples will usually result in significantly underestimated response uncertainty relative to propagation of a much larger population that adequately samples the presiding random-function source. A simple classical statistical method, tolerance intervals (TIs), is tested for effectively treating sparse stress–strain curve data. The method is found to perform well on the highly nonlinear input-to-output response mappings and non-normal response distributions in the can crush problem. The results and discussion in this paper support a proposition that the method will apply similarly well for other sparsely sampled random variable or function data, whether from experiments or models. The simple TI method is also demonstrated to be very economical.

References

1.
Romero
,
V.
,
Schroeder
,
B.
,
Dempsey
,
J. F.
,
Lewis
,
J.
,
Breivik
,
N.
,
Orient
,
G.
,
Antoun
,
B.
,
Winokur
,
J.
,
Glickman
,
M.
, and
Red-Horse
,
J.
,
2017
, “
Evaluation of a Simple UQ Approach to Compensate for Sparse Stress-Strain Curve Data in Solid Mechanics Applications
,”
AIAA
Paper No. 2017-0818.
2.
Romero
,
V.
,
Dempsey
,
J. F.
,
Wellman
,
G.
, and
Antoun
,
B.
,
2012
, “
A Method for Projecting Uncertainty From Sparse Samples of Discrete Random Functions—Example of Multiple Stress-Strain Curves
,”
AIAA
Paper No. 2012-1365.
3.
Hahn
,
G. J.
, and
Meeker
,
W. Q.
,
1991
,
Statistical Intervals—A Guide for Practitioners
,
Wiley
, New York.
4.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
1994
,
Applied Statistics and Probability for Engineers
,
Wiley
, New York.
5.
Romero
,
V.
,
Dempsey
,
J. F.
, and
Antoun
,
B.
,
2014
, “
UQ and V&V Techniques Applied to Experiments and Simulations of Heated Pipes Pressurized to Failure
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2014-3985
.http://prod.sandia.gov/techlib/access-control.cgi/2014/143985.pdf
6.
Romero
,
V.
,
Black
,
A.
,
Breivik
,
N.
,
Orient
,
G.
,
Suo-Anttila
,
J.
,
Antoun
,
B.
, and
Dodd
,
A.
,
2015
, “
Advanced UQ and V&V Procedures Applied to Thermal-Mechanical Response and Weld Failure in Heated Pressurizing Canisters
,” Sandia National Laboratories, Albuquerque, NM, Document No.
SAND2015-3005C
.https://www.osti.gov/servlets/purl/1248856
7.
Jamison
,
R.
,
Romero
,
V.
,
Stavig
,
M.
,
Buchheit
,
T.
, and
Newton
,
C.
,
2016
, “
Experimental Data Uncertainty, Calibration, and Validation of a Viscoelastic Potential Energy Clock Model for Inorganic Sealing Glasses
,” ASME Verification and Validation Symposium, Las Vegas, NV, May 18–20.
8.
Winokur
,
J.
, and
Romero
,
V.
,
2016
, “
Optimal Design of Computer Experiments for Uncertainty Quantification With Sparse Discrete Sampling
,” Sandia National Laboratories, Albuquerque, NM, Document No. SAND2016-12608 J.
9.
Wellman
,
G. W.
,
2012
, “
A Simple Approach to Modeling Ductile Failure
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2012-1343
.http://prod.sandia.gov/techlib/access-control.cgi/2012/121343.pdf
10.
Antoun
,
B. R.
,
2012
, “
Material Characterization and Coupled Thermal-Mechanical Experiments for Pressurized, High Temperature Systems
,” Sandia National Laboratories, Livermore, CA, Technical Report.
11.
Davis, J. R., ed.,
1994
,
ASM Specialty Handbook: Stainless Steels
, ASM International, Materials Park, OH.
12.
BSSA
,
2014
, “
Elevated Temperature Physical Properties of Stainless Steels
,” British Stainless Steel Association, Sheffield, UK, accessed Mar. 30, 2018, http://www.bssa.org.uk/topics.php?article=139
13.
Dempsey
,
J. F.
,
Romero
,
V.
,
Breivik
,
N.
,
Orient
,
G.
,
Antoun
,
B.
,
Schroeder
,
B.
,
Lewis
,
J.
, and
Winokur
,
J.
,
2016
, “
Can Crush Model and Simulations for Verifying Uncertainty Quantification Method for Sparse Stress-Strain Curve Data
,”
ASME
Paper No. IMECE2016-65245.
14.
SIERRA Solid Mechanics Team,
2016
, “
Adagio: Sierra/SolidMechanics Version 4.42 Theory Manual
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2016-9922 O.
15.
Howe
,
W. G.
,
1969
, “
Two-Sided Tolerance Limits for Normal Populations—Some Improvements
,”
J. Am. Stat. Assoc.
,
64
(
326
), pp.
610
620
.
16.
Young
,
D. S.
,
2010
, “
Tolerance: An R Package for Estimating Tolerance Intervals
,”
J. Stat. Software
,
36
(
50
), pp.
1
39
.https://www.jstatsoft.org/article/view/v036i05
17.
Romero
,
V.
,
Mullins
,
J.
,
Swiler
,
L.
, and
Urbina
,
A.
,
2013
, “
A Comparison of Methods for Representing and Aggregating Uncertainties Involving Sparsely Sampled Random Variables—More Results
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp. 447–473.
18.
Romero
,
V.
,
L.
,
Swiler
,
A.
,
Urbina
,
J.
, and
Mullins
,
2013
, “
A Comparison of Methods for Representing Sparsely Sampled Random Quantities
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2013-4561.
19.
Pradlwarter
,
H. J.
, and
Schuëller
,
G. I.
,
2008
, “
The Use of Kernel Densities and Confidence Intervals to Cope With Insufficient Data in Validation Experiments
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2550
2560
.
20.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2011
, “
Likelihood-Based Representation of Epistemic Uncertainty Due to Sparse Point Data and/or Interval Data
,”
Reliab. Eng. Syst. Saf.
,
96
(
7
), pp.
814
824
.
21.
Zaman
,
K.
,
McDonald
,
M.
,
Rangavajhala
,
S.
, and
Mahadevan
,
S.
,
2010
, “
Representation and Propagation of Both Probabilistic and Interval Uncertainty
,”
AIAA
Paper No. 2010-2853.
22.
Johnson
,
N. L.
,
1949
, “
Systems of Frequency Curves Generated by Methods of Translation
,”
Biometrika
,
36
(
Pt. 1–2
), pp.
149
176
.
23.
An
,
J.
,
Acar
,
E.
,
Haftka
,
R. T.
,
Kim
,
N. H.
,
Ifju
,
P. G.
, and
Johnson
,
T. F.
,
2008
, “
Being Conservative With a Limited Number of Test Results
,”
AIAA J. Aircr.
,
45
(
6
), pp. 1969–1975.
24.
Romero
,
V.
,
M.
,
Bonney
,
B.
,
Schroeder
,
J.
, and
Winokur
,
2017
, “
Evaluation of a Class of Simple and Effective Uncertainty Methods for Sparse Samples of Random Variables and Functions
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2017-12349.
25.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2013
, “
Distribution Type Uncertainty Due to Sparse and Imprecise Data
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
182
198
.
26.
Romero
,
V.
,
2018
, “
Discrete Direct Model Calibration and Propagation Approach Addressing Sparse Replicate Tests and Material, Geometric, and Measurement Uncertainties
,” Sandia National Laboratories, Albuquerque, NM, Document No. SAND2017-12524 C.
27.
Romero, V., Weirs, V. G., Schroeder, B., Lewis, J. R., Hund, L., and Mullins, J.,
2018
, “
Approaches to Experimental Data UQ and QMU for Scalar Data From Stochastically Varying Systems
,” Sandia National Laboratories, Albuquerque, NM (in preparation).
28.
Bhachu
,
K. S.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2016
, “
Comparison of Methods for Calculating B-Basis Crack Growth Life Using Limited Tests
,”
AIAA J.
,
54
(
4
), pp.
1287
1298
.
29.
Zhang
,
J.
, and
Shields
,
M.
,
2018
, “
On the Quantification and Efficient Propagation of Imprecise Probabilities Resulting From Small Datasets
,”
Mech. Syst. Sig. Process.
,
98
, pp.
465
483
.
30.
Devore
,
J. L.
,
1982
,
Probability & Statistics for Engineering and the Sciences
,
Brooks/Cole Publishing, Wadsworth
,
Belmont, CA
, pp.
99
104
.
You do not currently have access to this content.