Severe accident facilities for European safety targets (SAFEST) is a European project networking the European experimental laboratories focused on the investigation of a nuclear power plant (NPP) severe accident (SA) with reactor core melting and formation of hazardous material system known as corium. The main objective of the project is to establish coordinated activities, enabling the development of a common vision and severe accident research roadmaps for the next years, and of the management structure to achieve these goals. In this frame, a European roadmap on severe accident experimental research has been developed to define research challenges to contribute to further reinforcement of Gen II and III NPP safety. The roadmap takes into account different SA phenomena and issues identified and prioritized in the analyses of severe accidents at commercial NPPs and in the results of the recent European stress tests carried out after the Fukushima accident. Nineteen relevant issues related to reactor core meltdown accidents have been selected during these efforts. These issues have been compared to a survey of the European SA research experimental facilities and corium analysis laboratories. Finally, the coherence between European infrastructures and R&D needs has been assessed and a table linking issues and infrastructures has been derived. The comparison shows certain important lacks in SA research infrastructures in Europe, especially in the domains of core late reflooding impact on source term, reactor pressure vessel failure and molten core release modes, spent fuel pool (SFP) accidents, as well as the need for a large-scale experimental facility operating with up to 500 kg of chemically prototypic corium melt.

References

1.
Jaquemain
,
D.
, ed.,
2015
,
Nuclear Power Reactor Core Melt Accidents: Current State of Knowledge
(IRSN Science and Technology Series),
EDP Sciences
,
Paris, France
.
2.
Van Dorsselaere
,
J. P.
,
2013
, “
Technical Area 2—Severe Accidents
,”
NUGENIA Roadmaps
,
K.
Ben Ouagrhem
, ed.,
NUGENIA
, Brussels, Belgium.
3.
Bruna
,
G.
,
2013
, “
Identification of Research Areas in Response to the Fukushima Accident
,” SNE-TP Report, Brussels, Belgium.
4.
NUGENIA
,
2015
, “
Global Vision Report, Nuclear Gen II and III Association
,” NUGENIA Association, Brussels, Belgium, accessed May 10, 2015, http://www.nugenia.org
5.
Miassoedev
,
A.
,
2015
, “
Severe Accident Facilities for European Safety Targets: The SAFEST Project
,” European Review Meeting on Severe Accident Research Conference (ERMSAR), Marseille, France, Mar. 24–26.
6.
ESNII
,
2010
, “
The European Sustainable Nuclear Industrial Initiative Concept Paper—A Contribution to the EU Low Carbon Energy Policy: Demonstration Programme for Fast Neutron Reactors
,” SNETP, Brussels, Belgium, accessed Sept. 22, 2017, http://www.snetp.eu/esnii/
7.
Magallon
,
D.
,
Maillat
,
A.
,
Seiler
,
J.-M.
,
Atkhen
,
K.
,
Sjövall
,
H.
,
Dickinson
,
S.
,
Jakab
,
J.
,
Meyer
,
L.
,
Buerger
,
M.
,
Traumbauer
,
K.
,
Fickert
,
L.
,
Sehgal
,
B. R.
,
Hozer
,
Z.
,
Bagues
,
J.
,
Martin-Fuentes
,
F.
,
Zeyen
,
R.
,
Annunziatto
,
A.
,
El-Shanawany
,
M.
,
Guentay
,
S.
,
Tinkler
,
C.
,
Turland
,
B.
, and
Herranz Puebla
,
L. E.
,
2005
, “
European Expert Network for the Reduction of Uncertainties in Severe Accident Safety Issues (EURSAFE)
,”
Nucl. Eng. Des.
,
235
(2–4), pp.
309
346
.
8.
Klein-Hessling
,
W.
,
Sonnenkalb
,
M.
,
Jacquemain
,
D.
,
Clément
,
B.
,
Raimond
,
E.
,
Dimmelmeier
,
H.
,
Azarian
,
G.
,
Ducros
,
G.
,
Journeau
,
C.
,
Herranz Puebla
,
L. E.
,
Schumm
,
A.
,
Miassoedov
,
A.
,
Kljenak
,
I.
,
Pascal
,
G.
,
Bechta
,
S.
,
Güntay
,
S.
,
Koch
,
M. K.
,
Ivanov
,
I.
,
Auvinen
,
A.
, and
Lindholm
,
I.
,
2014
, “
Conclusions on Severe Accident Research Priorities
,”
Ann. Nucl. Energy
,
74
, pp.
4
11
.
9.
Kudinov
,
P.
,
Galushin
,
S.
,
Yakush
,
S.
,
Villanueva
,
W.
,
Phung
,
V.-A.
,
Grishchenko
,
D.
, and
Dinh
,
N.
,
2014
, “
A Framework for Assessment of Severe Accident Management Effectiveness in Nordic BWR Plants
,”
Probabilistic Safety Assessment and Management
(PSAM 12), Honolulu, HI, June 22–27, Paper No. 154.
10.
Grishchenko
,
D.
,
Basso
,
S.
,
Kudinov
,
P.
, and
Bechta
,
S.
,
2014
, “
Sensitivity Study of Steam Explosion Characteristics to Uncertain Input Parameters Using TEXAS-V Code
,”
Tenth International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10)
, Okinawa, Japan, Dec. 14–18, Paper No.
1293
.https://www.researchgate.net/publication/280719584_Sensitivity_Study_of_Steam_Explosion_Characteristics_to_Uncertain_Input_Parameters_Using_TEXAS-V_Code
11.
Suzuki
,
A.
,
Sato
,
K.
, and
Terei
,
T.
,
2014
, “
Thermodynamic Calculation on Possible Chemical Forms of Released Fission Products From Failed Fuel Rod in Severe Accident Conditions
,”
Second Asian Nuclear Fuel Cycle Conference
(
ANFC
), Sendai, Japan, Sept. 18–19.
12.
Journeau
,
C.
,
Liao
,
Y.
,
Zhang
,
H.
,
Miassoedov
,
A.
,
Tian
,
W.
,
Bo
,
K.
, and
Gauss-Liu
,
X.
,
2015
, “
Access to Large Infrastructures for Severe Accidents in Europe and in China
,”
European Review Meeting on Severe Accident Research (ERMSAR)
, Marseille, France, Mar. 24–26, Paper No. 024.
13.
Steinbrück
,
M.
,
Grosse
,
M.
,
Sepold
,
L.
, and
Stuckert
,
J.
,
2010
, “
Synopsis and Outcome of the QUENCH Experimental Programme
,”
Nucl. Eng. Des.
,
240
(
7
), pp.
1714
1727
.
14.
Hózer
,
Z.
,
Balaskó
,
M.
,
Horváth
,
M.
,
Kunstár
,
M.
,
Matus
,
L.
,
Nagy
,
I.
,
Novotny
,
T.
,
Perez-Feró
,
E.
,
Pintér
,
A.
,
Vér
,
N.
,
Vimi
,
A.
, and
Windberg
,
P.
,
2010
, “
Quenching of High Temperature VVER Fuel After Long Term Oxidation in Hydrogen Rich Steam
,”
Ann. Nucl. Ener.
,
37
(
1
), pp.
71
82
.
15.
Karbojian
,
A.
,
Ma
,
W.
,
Kudinov
,
P.
, and
Dinh
,
T. N.
,
2009
, “
A Scoping Study of Debris Formation
,”
Nucl. Eng. Des.
,
239
(
9
), pp.
1653
1659
.
16.
Manickam
,
L.
,
Bechta
,
S.
, and
Ma
,
W.
,
2017
, “
On the Fragmentation Characteristics of Melt Jets Quenched in Water
,”
Int. J. Multiphase Flows
,
91
, pp.
262
275
.
17.
Repetto
,
G.
,
Garcin
,
T.
,
Eymery
,
S.
, and
Fichot
,
F.
,
2013
, “
Experimental Program on Debris Reflooding (PEARL)—Results on PRELUDE Facility
,”
Nucl. Eng. Des.
,
264
, pp.
176
186
.
18.
Chikhi
,
N.
,
Garcin
,
T.
,
Foubert
,
F.
,
March
,
P.
, and
Fichot
,
F.
,
2015
, “
First Experimental Results of Large Scale Debris Bed Reflood Tests in the PEARL Facility
,” 16th International Topical Meeting on Nuclear Reactor Thermalhydraulics (NURETH-16), Chicago, IL, Aug. 30–Sept. 4, Paper No. 13824.
19.
Starflinger
,
J.
,
Buck
,
M.
,
Hartmann
,
A.
,
Kulenovic
,
R.
,
Leininger
,
S.
,
Rahman
,
S.
, and
Rashid
,
M.
,
2015
, “
Recent Numerical Simulations and Experiments on Coolability of Debris Beds During Severe Accidents of Light Water Reactors
,”
Nucl. Eng. Des.
,
294
, pp.
153
160
.
20.
Takasuo
,
E.
,
Holmström
,
S.
,
Kinnunen
,
T.
, and
Pankakoski
,
P. H.
,
2012
, “
The COOLOCE Experiments Investigating the Dryout Power in Debris Beds of Heap-Like and Cylindrical Geometries
,”
Nucl. Eng. Des.
,
250
, pp.
687
700
.
21.
Li
,
L.
,
Ma
,
W.
, and
Thakre
,
S.
,
2012
, “
An Experimental Study on Pressure Drop and Dryout Heat Flux of Two-Phase Flow in Packed Beds of Multi-Sized and Irregular Particles
,”
Nucl. Eng. Des.
,
242
, pp.
369
378
.
22.
Gaus-Liu
,
X.
,
Miassoedov
,
A.
,
Cron
,
T.
, and
Wenz
,
T.
,
2010
, “
In-Vessel Melt Pool Coolability Test—Description and Results of LIVE Experiments
,”
Nucl. Eng. Des.
,
240
(
11
), pp.
3898
3903
.
23.
Granovsky
, V
. S.
,
Khabensky
,
V. B.
,
Krushinov
,
E. V.
,
Vitol
,
S. A.
,
Sulatsky
,
A. A.
,
Almjashev
,
V. I.
,
Bechta
,
S. V.
,
Gusarov
,
V. V.
,
Barrachin
,
M.
,
Bottomley
,
P. D.
,
Fischer
,
M.
, and
Piluso
,
P.
,
2014
, “
Oxidation Effect on Steel Corrosion and Thermal Loads During Corium Melt in-Vessel Retention
,”
Nucl. Eng. Des.
,
278
, pp.
310
316
.
24.
Bouyer
,
V.
,
Cassiaut-Louis
,
N.
,
Fouquart
,
P.
, and
Piluso
,
P.
,
2015
, “
PLINIUS Prototypic Corium Platform: Major Results and Future Works
,” International Topical Meeting on Nuclear Reactor Thermalhydraulics (NURETH), Chicago, IL, Aug. 30–Sept. 4, Paper No. 13479.
25.
Guénadou
,
D.
, and
Verloo
,
E.
,
2012
, “
Presentation of the RESCUE Facilities for in Vessel Corium Retention Studies: Toolbox for Improving the Modelling
,” 21st International Nuclear Energy New Europe Conference, Ljubljana, Slovenia, Sept. 5–7, Paper No. 809.
26.
Ézsöl
,
G.
,
Gábor
,
B.
,
László
,
P.
,
László
,
S.
, and
Iván
,
T.
,
2010
, “
Modelling of External Cooling for In-Vessel Corium Retention in VVER-440/213 Type Nuclear Power Plants
,”
ASME
Paper No. ICONE18-29413.
27.
Chen
,
X.
,
Zhang
,
S.
,
Lin
,
J.
, and
Zhang
,
H.
,
2010
, “
The Analytical and Experimental Research of In-Vessel Corium Retention in CPR1000
,”
ASME
Paper No. ICONE18-29833.
28.
Cheng
,
X.
,
Yang
,
Y. H.
,
Ouyang
,
Y.
, and
Miao
,
H. X.
,
2009
, “
Role of Passive Safety Systems in Chinese Nuclear Power Development
,”
Sci. Technol. Nucl. Install.
,
2009
, p.
573026
.
29.
Journeau
,
C.
,
Buffe
,
L.
, and
Cassiaut-Louis
,
N.
,
2014
, “
PLINIUS-2: A New Versatile Platform for Severe Accident Assessments
,” 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10), Okinawa, Japan, Dec. 14–18, Paper No.
1333
https://inis.iaea.org/search/search.aspx?orig_q=RN:47051575.
30.
Concilio Hansson
,
R.
,
Park
,
H. S.
, and
Dinh
,
T. N.
,
2009
, “
Simultaneous High Speed Digital Cinematographic and X-Ray Radiographic Imaging of an Intense Multi-Fluid Interaction With Rapid Phase Changes
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
754
763
.
31.
Kudinov
,
P.
,
Grishchenko
,
D.
,
Konovalenko
,
A.
,
Karbojian
,
A.
, and
Bechta
,
S.
, “
Investigation of Steam Explosion in Stratified Melt-Coolant Configuration
,” 10th International Topical Meting on Nuclear Thermal Hydraulics, Operation and Safety (
NUTHOS-10
), Okinawa, Japan, Dec. 14–18.https://www.researchgate.net/publication/280719489_Investigation_of_Steam_Explosion_in_Stratified_Melt-Coolant_Configuration
32.
Meyer
,
L.
,
Albrecht
,
G.
,
Kirstahler
,
M.
,
Schwall
,
M.
,
Wachter
,
E.
, and
Gaus-Liu
,
X.
,
2011
,
Melt Dispersion and Direct Containment Heating (DCH) Experiments for Konvoi Reactors
, Vol.
7567
,
KIT Scientific Reports
, KIT, Karlsruhe, Germany.
33.
Foit
,
J. J.
,
Fischer
,
M.
,
Journeau
,
Ch.
, and
Langrock
,
G.
,
2014
, “
Experiments on MCCI With Oxide and Steel
,”
Ann. Nucl. Energy
,
74
, pp.
100
109
.
34.
Sevón
,
T.
,
Kinnunen
,
T.
,
Virta
,
J.
,
Holmström
,
S.
,
Kekki
,
T.
, and
Lindholm
,
I.
,
2010
, “
HECLA Experiments on Interaction Between Metallic Melt and Hematite-Containing Concrete
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3586
3593
.
35.
Farmer
,
M. T.
,
Lomperski
,
S.
,
Kilsdonk
,
D.
,
Aeschlimann
,
R. W.
, and
Basu
,
S.
,
2007
, “
A Summary of Findings From the Melt Coolability and Concrete Interaction (MCCI) Program
,” International Congress on Advances in Nuclear Power Plants (ICAPP), Nice, France, May 13–18, Paper No.
7544
.https://inis.iaea.org/search/search.aspx?orig_q=RN:39090714
36.
Amizic
,
M.
,
Guyez
,
E.
, and
Seiler
,
J. M.
,
2012
, “
Experimental Investigation on Heat Transfer for Two-Phase Flow Under Natural Convection: First CLARA Test Results
,”
ASME
Paper No. ICONE20-POWER2012-55225.
37.
Fischer
,
M.
,
Herbst
,
O.
, and
Schmidt
,
H.
, 2005, “
Demonstration of the Heat Removing Capabilities of the EPR Core Catcher
,”
Nucl. Eng. Des.
,
235
(10–12), pp. 1189–1200.
38.
Petrov
,
Y. B.
,
Udalov
,
Y. P.
,
Subrt
,
J.
,
Bakardjieva
,
S.
,
Sazavsky
,
P.
,
Kiselova
,
M.
,
Selucky
,
P.
,
Bezdicka
,
P.
,
Journeau
,
C.
, and
Piluso
,
P.
,
2009
, “
Phase Equilibria During Crystallization of Melts of the Uranium Oxide-Iron Oxide System in Air
,”
Glass Phys. Chem.
,
35
(
3
), pp.
298
307
.
39.
Quaini
,
A.
,
Guéneau
,
C.
,
Gossé
,
S.
,
Alpettaz
,
T.
,
Brackx
,
E.
,
Domenger
,
R.
,
Chocard
,
A.
, and
Hodaj
,
F.
,
2016
, “
Experimental Contribution to the Corium Thermodynamic Modelling—The U–Zr–Al–Ca–Si–O System
,”
Ann. Nucl. Energy
,
93
, pp.
43
49
.
40.
Manara
,
D.
,
Ronchi
,
C.
,
Sheindlin
,
M.
, Lewis, M., and
Brykin
,
M.
,
2005
, “
Melting of Stoichiometric and Hyperstoichiometric Uranium Dioxide
,”
J. Nucl. Mater.
,
342
(1–3), pp.
148
163
.
You do not currently have access to this content.