In the early development phase of complex technical systems, uncertainties caused by unknown design restrictions must be considered. In order to avoid premature design decisions, sets of good designs, i.e., designs which satisfy all design goals, are sought rather than one optimal design that may later turn out to be infeasible. A set of good designs is called a solution space and serves as target region for design variables, including those that quantify properties of components or subsystems. Often, the solution space is approximated, e.g., to enable independent development work. Algorithms that approximate the solution space as high-dimensional boxes are available, in which edges represent permissible intervals for single design variables. The box size is maximized to provide large target regions and facilitate design work. As a result of geometrical mismatch, however, boxes typically capture only a small portion of the complete solution space. To reduce this loss of solution space while still enabling independent development work, this paper presents a new approach that optimizes a set of permissible two-dimensional (2D) regions for pairs of design variables, so-called 2D-spaces. Each 2D-space is confined by polygons. The Cartesian product of all 2D-spaces forms a solution space for all design variables. An optimization problem is formulated that maximizes the size of the solution space, and is solved using an interior-point algorithm. The approach is applicable to arbitrary systems with performance measures that can be expressed or approximated as linear functions of their design variables. Its effectiveness is demonstrated in a chassis design problem.

References

References
1.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
2.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
3.
Al-Ashaab
,
A.
,
Howell
,
S.
,
Usowicz
,
K.
,
Hernando Anta
,
P.
, and
Gorka
,
A.
,
2009
, “
Set-Based Concurrent Engineering Model for Automotive Electronic/Software Systems Development
,”
19th CIRP Design Conference–Competitive Design
, Cranfield, UK, Mar. 30–31.https://core.ac.uk/download/pdf/139040.pdf?repositoryId=23
4.
Sobek
,
D. K.
, II
,
Ward
,
A. C.
, and
Liker
,
J. K.
,
1999
, “
Toyota's Principles of Set-Based Concurrent Engineering
,”
MIT Sloan Manage. Rev.
,
40
(
2
), pp.
67
83
.https://www.researchgate.net/publication/248139929_Toyota%27s_Principles_of_Set-Based_Concurrent_Engineering
5.
Zimmermann
,
M.
, and
Hoessle
,
J. E.
,
2013
, “
Computing Solution Spaces for Robust Design
,”
Int. J. Numer. Methods Eng.
,
94
(
3
), pp.
290
307
.
6.
Graff
,
L.
,
2013
, “
A Stochastic Algorithm for the Identification of Solution Spaces in High-Dimensional Design Spaces
,”
Ph.D. thesis
, University of Basel, Basel, Switzerland.http://edoc.unibas.ch/30278/
7.
Fender
,
J.
,
Graff
,
L.
,
Harbrecht
,
H.
, and
Zimmermann
,
M.
,
2014
, “
Identifying Key Parameters for Design Improvement in High-Dimensional Systems With Uncertainty
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041007
.
8.
Lehar
,
M.
, and
Zimmermann
,
M.
,
2012
, “
An Inexpensive Estimate of Failure Probability for High-Dimensional Systems With Uncertainty
,”
Struct. Saf.
,
36–37
, pp.
32
38
.
9.
Eichstetter
,
M.
,
Redeker
,
C.
,
Kvasnicka
,
P.
,
Müller
,
S.
, and
Zimmermann
,
M.
,
2014
, “
Solution Spaces for Damper Design in Vehicle Dynamics
,”
Fifth International Munich Chassis Symposium
, Munich, Germany, June 24–25, pp. 107–132.
10.
Münster
,
M.
,
Lehner
,
M.
,
Rixen
,
D.
, and
Zimmermann
,
M.
,
2014
, “
Vehicle Steering Design Using Solution Spaces for Decoupled Dynamical Subsystems
,”
26th Conference on Noise and Vibration Engineering (ISMA)
, Leuven, Belgium, Sept. 15–17, pp.
279
288
.
11.
Graff
,
L.
,
Harbrecht
,
H.
, and
Zimmermann
,
M.
,
2012
, “
On the Computation of Solution Spaces in High Dimensions
,”
Struct. Multidiscip. Optim.
,
54
(
4
), pp.
811
829
.
12.
Eichstetter
,
M.
,
Müller
,
S.
, and
Zimmermann
,
M.
,
2015
, “
Product Family Design With Solution Spaces
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121401
.
13.
Fender
,
J. H. W.
,
2014
, “
Solution Spaces for Vehicle Crash Design
,”
Ph.D. thesis
, Technical University of Munich, Munich, Germany.http://www.shaker.nl/Online-Gesamtkatalog-Download/2017.08.11-11.19.53-115.111.50.242-radBF047.tmp/3-8440-2550-2_INH.PDF
14.
Erschen
,
S.
,
Duddeck
,
F.
, and
Zimmermann
,
M.
,
2015
, “
Robust Design Using Classical Optimization
,”
PAMM
,
15
(
1
), pp.
565
566
.
15.
Beer
,
M.
, and
Liebscher
,
M.
,
2008
, “
Designing Robust Structures—A Nonlinear Simulation Based Approach
,”
Comput. Struct.
,
86
(
10
), pp.
1102
1122
.
16.
Götz
,
M.
,
Liebscher
,
M.
, and
Graf
,
W.
,
2012
, “
Efficient Detection of Permissible Design Spaces in an Early Design Stage
,”
11th LS-Dyna Forum
, Ulm, Germany, Oct. 9–10, pp.
9
10
.https://www.dynamore.de/de/download/papers/ls-dyna-forum-2012/documents/optimization-1-1
17.
Rocco
,
C. M.
,
Moreno
,
J. A.
, and
Carrasquero
,
N.
,
2003
, “
Robust Design Using a Hybrid-Cellular-Evolutionary and Interval-Arithmetic Approach: A Reliability Application
,”
Reliab. Eng. Syst. Saf.
,
79
(
2
), pp.
149
159
.
18.
Fender
,
J.
,
Duddeck
,
F.
, and
Zimmermann
,
M.
,
2017
, “
Direct Computation of Solution Spaces
,”
Struct. Multidiscip. Optim.
,
55
(
5
), pp.
1787
1796
.
19.
ISO
,
2012
, “
Passengers Cars—Steady-State Circular Driving Behavior—Open Loop Test Methods
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 4138-2012
.https://www.iso.org/standard/54143.html
20.
Fung
,
G.
,
Sandilya
,
S.
, and
Rao
,
R. B.
,
2005
, “
Rule Extraction From Linear Support Vector Machines
,”
11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
(
KDD
), Chicago, IL, Aug. 21–24, pp.
32
40
.
21.
Allgower
,
E. L.
, and
Schmidt
,
P. H.
,
1986
, “
Computing Volumes of Polyhedra
,”
Math. Comput.
,
46
(
173
), pp.
171
174
.
22.
Gerdts
,
M.
, and
Lempio
,
F.
,
2011
,
Mathematische Optimierungsverfahren des Operations Research
,
Walter de Gruyter
,
Berlin
.
23.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.
24.
Byrd
,
R. H.
,
Hribar
,
M. E.
, and
Nocedal
,
J.
,
1999
, “
An Interior Point Algorithm for Large-Scale Nonlinear Programming
,”
SIAM J. Optim.
,
9
(
4
), pp.
877
900
.
25.
Waltz
,
R. A.
,
Morales
,
J. L.
,
Nocedal
,
J.
, and
Orban
,
D.
,
2006
, “
An Interior Algorithm for Nonlinear Optimization That Combines Line Search and Trust Region Steps
,”
Math. Program.
,
107
(
3
), pp.
391
408
.
You do not currently have access to this content.