Abstract
Vibration induced fatigue (VIF) failure of topside piping is one of the most common causes of the hydrocarbon release on offshore oil and gas platforms operating in the North Sea region. An effective inspection plan for the identification of fatigue critical piping locations has the potential to minimize the hydrocarbon release. One of the primary challenges in preparation of inspection program for offshore piping is to identify the fatigue critical piping locations. At present, the three-staged risk assessment process (RAP) given in the Energy Institute (EI) guidelines is used by inspection engineers to determine the likelihood of failure (LoF) of process piping due to VIF. Since the RAP is afflicted by certain drawbacks, this paper presents an alternative risk assessment approach (RAA) to RAP for identification and prioritization of fatigue critical piping locations. The proposed RAA consists of two stages. The first stage involves a qualitative risk assessment using fuzzy-analytical hierarchy process (FAHP) methodology to identify fatigue critical systems (and the most dominant excitation mechanism) and is briefly discussed in the paper. The fatigue critical system identified during stage 1 of RAA undergoes further assessment in the second stage of the RAA. This stage employs a fuzzy-logic method to determine the LoF of the mainline piping. The outcome of the proposed RAA is the categorization of mainline piping, into high, medium, or low risk grouping. The mainline piping in the high-risk category is thereby prioritized for inspection. An illustrative case study demonstrating the usability of the proposed RAA is presented.