The nonlinear stochastic behavior of a nonconservative acousto-elastic system is in focus in the present work. The deterministic acousto-elastic system consists of a spinning disk in a compressible fluid filled enclosure. The nonlinear rotating plate dynamics is coupled with the linear acoustic oscillations of the surrounding fluid, and the coupled field equations are discretized and solved at various rotation speeds. The deterministic system reveals the presence of a supercritical Hopf bifurcation when a specific coupled mode undergoes a flutter instability at a particular rotation speed. The effect of randomness associated with the damping parameters are investigated and quantified on the coupled dynamics and the stochastic bifurcation behavior is studied. The quantification of the parametric randomness has been undertaken by means of a spectral projection based polynomial chaos expansion (PCE) technique. From the marginal probability density functions (PDFs), it is observed that the stochastic system exhibits stochastic phenomenological bifurcations (P-bifurcation). The study provides insights into the behavior of the stochastic system during its P-bifurcation with reference to the deterministic Hopf bifurcation.

References

References
1.
Renshaw
,
A. A.
,
D'Angelo
,
C.
, III, and
Mote
,
C. D.
, Jr.,
1994
, “
Aerodynamically Excited Vibration of a Rotating Disk
,”
J. Sound Vib.
,
177
(
5
), pp.
577
590
.
2.
Kang
,
N.
, and
Raman
,
A.
,
2004
, “
Aeroelastic Flutter Mechanisms of a Flexible Disk Rotating in an Enclosed Compressible Fluid
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
120
130
.
3.
Dowell
,
E. H.
,
Gorman
,
G. F.
, and
Smith
,
D. A.
,
1977
, “
Acoustoelasticity: General Theory, Acoustic Natural Modes and Forced Response to Sinusoidal Excitation, Including Comparisons With Experiment
,”
J. Sound Vib.
,
52
(
4
), pp.
519
542
.
4.
Remigius
,
W. D.
,
Sarkar
,
S.
, and
Gupta
,
S.
,
2017
, “
Bifurcation and Response Analysis of a Nonlinear Flexible Rotating Disc Immersed in Bounded Compressible Fluid
,”
J. Sound Vib.
,
392
, pp.
260
279
.
5.
Jana
,
A.
, and
Raman
,
A.
,
2005
, “
Nonlinear Aeroelastic Flutter Phenomena of a Flexible Disk Rotating in an Unbounded Fluid
,”
J. Fluids Struct.
,
20
(
7
), pp.
993
1006
.
6.
Pettit
,
C. L.
, and
Beran
,
P. S.
,
2003
, “
Effects of Parametric Uncertainty on Airfoil Limit Cycle Oscillation
,”
J. Aircr.
,
40
(
5
), pp.
1004
1006
.
7.
Remigius
,
W. D.
,
Garg
,
S.
, and
Sarkar
,
S.
,
2016
, “
Uncertainty Quantification of a Non-Linear Rotating Plate Behavior in Compressible Fluid Medium
,”
Procedia Eng.
,
144
, pp.
979
981
.
8.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
9.
Loeven
,
G. J. A.
,
Witteveen
,
J. A. S.
, and
Bijl
,
H.
,
2007
, “
Probabilistic Collocation: An Efficient Non-Intrusive Approach for Arbitrarily Distributed Parametric Uncertainties
,”
AIAA
Paper No. AIAA 2007-317.https://doi.org/10.2514/6.2007-317
10.
Witteveen
,
J. A.
,
Loeven
,
A.
,
Sarkar
,
S.
, and
Bijl
,
H.
,
2008
, “
Probabilistic Collocation for Period-1 Limit Cycle Oscillations
,”
J. Sound Vib.
,
311
(
1
), pp.
421
439
.
11.
Ghanem
,
R. G.
, and
Spanos
,
P.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
12.
Magara
,
Y.
,
Narita
,
M.
,
Yamaguchi
,
K.
,
Takahashi
,
N.
, and
Kuwano
,
T.
,
1991
, “
Natural Frequencies of Centrifugal Compressor Impellers for High Density Gas Applications
,”
ASME
Paper No. IMECE2008-67278.
13.
Pettit
,
C. L.
, and
Beran
,
P. S.
,
2006
, “
Spectral and Multiresolution Wiener Expansions of Oscillatory Stochastic Process
,”
J. Sound Vib.
,
294
(4–5), pp.
752
779
.
14.
Lucor
,
D.
,
Su
,
C.-H.
, and
Karniadakis
,
G. E.
,
2004
, “
Generalized Polynomial Chaos and Random Oscillators
,”
Int. J. Numer. Methods Eng.
,
60
(
3
), pp.
571
596
.
15.
Sarkar
,
S.
,
Devathi
,
H.
, and
Remigius
,
W. D.
,
2016
,
Uncertainty Quantification in Aeroelastic Problems
,
World Scientific
,
Singapore
, pp.
151
180
.
16.
Cameron
,
R. H.
, and
Martin
,
W. T.
,
1947
, “
The Orthogonal Development of Nonlinear Functionals in Series of Fourier-Hermite Functionals
,”
Ann. Math.
,
48
(
2
), pp.
385
392
.
17.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
Modelling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
.
18.
Poirel
,
D. C. M.
,
2001
, “
Random Dynamics of a Structurally Nonlinear Airfoil in Turbulent Flow
,”
Ph.D. thesis
, McGill University, Montreal, QC, Canada.http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=37813&local_base=GEN01-MCG02
19.
Poirel
,
D.
,
Harris
,
Y.
, and
Benaissa
,
A.
,
2008
, “
Self-Sustained Aeroelastic Oscillations of a NACA0012 Airfoil at Low-to-Moderate Reynolds Numbers
,”
J. Fluids Struct.
,
24
(
5
), pp.
700
719
.
20.
Desai
,
A.
,
Witteveen
,
J. A.
, and
Sarkar
,
S.
,
2013
, “
Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051034
.
21.
Branicki
,
M.
, and
Majda
,
A. J.
,
2013
, “
Fundamental Limitations of Polynomial Chaos for Uncertainty Quantification in Systems With Intermittent Instabilities
,”
Comm. Math. Sci.
,
11
(
1
), pp.
55
103
.
You do not currently have access to this content.